| [1] DONOHO D L.Compressed sensing[J].IEEE Transactions on Information Theory, 2006, 52(4):1289-1306. [2] XIAO Y, YANG J, YUAN X.Alternating algorithms for total variation image reconstruction from random projections[J].Inverse Problems & Imaging, 2012, 6(3):547-563.
 [3] DONG S W, SHI G M, LI X, et al.Image reconstruction with locally adaptive sparsity and nonlocal robust regularization[J].Signal Processing:Image Communication, 2012, 27(10):1109-1122.
 [4] ELDAR Y C, KUPPINGER P, BOLCSKEI H.Block-sparse signals:uncertainty relations and efficient recovery[J].IEEE Transactions on Signal Processing, 2010, 58(6):3042-3054.
 [5] KULKARNI K, LOHIT S, TURAGA P, et al.ReconNet:non-iterative reconstruction of images from compressively sensed measurements[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:449-458.
 [6] HE K M, ZHANG X, REN S, et al.Deep residual learning for image recognition[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778.
 [7] YAO H, DAI F, ZHANG S, et al.DR2-Net:deep residual reconstruction network for image compressive sensing[J].Neurocomputing, 2019, 359:483-493.
 [8] 刘玉红, 刘树英, 付福祥.基于卷积神经网络的压缩感知重构算法优化[J].计算机科学, 2020, 47(3):143-148. LIU Y H, LIU S Y, FU F X.Opimization of compressed sensing reconstruction algorithm optimization based on convolutional neural network[J].Computer Science, 2020, 47(3):143-148.(in Chinese)
 [9] XIE X M, WANG Y X, SHI G M, et al.Adaptive measurement network for CS image reconstruction[C]//Proceedings of Chinese Conference on Computer Vision.Berlin, Germany:Springer, 2017:407-417.
 [10] LIU J, ZHANG W, TANG Y, et al.Residual feature aggregation network for image super-resolution[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:2359-2368.
 [11] MOU L, HUA Y, ZHU X X.Relation matters:relational context-aware fully convolutional network for semantic segmentation of high-resolution aerial images[J].IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(11):7557-7569.
 [12] ZHANG K, ZUO W, CHEN Y, et al.Beyond a Gaussian denoiser:residual learning of deep CNN for image denoising[J].IEEE Transactions on Image Processing, 2017, 26(7):3142-3155.
 [13] MOUSAVI A, PATEL A B, BARANIUK R G.A deep learning approach to structured signal recovery[C]//Proceedings of the 53rd Annual Allerton Conference on Communication, Control, and Computing.Washington D.C., USA:IEEE Press, 2015:1336-1343.
 [14] LI Y D, HAO Z, LEI H.Survey of convolutional neural network[J].Journal of Computer Applications, 2016, 36(9):2508-2515.
 [15] 练秋生, 富利鹏, 陈书贞, 等.基于多尺度残差网络的压缩感知重构算法[J].自动化学报, 2019, 45(11):2082-2091. LIAN Q S, FU L P, CHEN S Z, et al.A compressed sensing algorithm based on multi-scale residual reconstruction network[J].Acta Automatica Sinica, 2019, 45(11):2082-2091.(in Chinese)
 [16] ZHANG J, GHANEM B.ISTA-Net:interpretable optimization-inspired deep network for image compressive sensing[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:1828-1837.
 [17] SUN Y, CHEN J, LIU Q, et al.Dual-path attention network for compressed sensing image reconstruction[J].IEEE Transactions on Image Processing, 2020, 29:9482-9495.
 [18] DU J, XIE X, WANG C, et al.Perceptual compressive sensing[C]//Proceedings of Chinese Conference on Pattern Recognition and Computer Vision.Berlin, Germany:Springer, 2018:268-279.
 [19] SHI W, JIANG F, ZHANG S, et al.Deep networks for compressed image sensing[C]//Proceedings of International Conference on Multimedia and Expo. Washington D.C., USA:IEEE Press, 2017:877-882.
 [20] 杨春玲, 裴翰奇.基于残差学习的多阶段图像压缩感知神经网络[J].华南理工大学学报(自然科学版), 2020, 48(5):82-91. YANG C L, PEI H Q.Multistage image compressive sensing neural network based on residual learning[J].Journal of South China University of Technology (Natural Science Edition), 2020, 48(5):82-91.(in Chinese).
 [21] DU J, XIE X, WANG C, et al.Fully convolutional measurement network for compressive sensing image reconstruction[J].Neurocomputing, 2019, 328:105-112
 [22] ZHANG Z, GAO D, XIE X, et al.Dual-channel reconstruction network for image compressive sensing[J].Sensors, 2019, 19(11):2549.
 [23] TAO X, HONG X, SHI W, et al.Analogy-detail networks for object recognition[J].IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(10):4404-4418.
 [24] WANG F, TAX D M J.Survey on the attention based RNN model and its applications in computer vision[EB/OL].[2021-11-19].https://arxiv.org/abs/1601.06823.pdf.
 [25] HU J, SHEN L, ALBANIE S, et al.Squeeze-and-excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8):2011-2023.
 [26] WOO S, PARK J, LEE J Y, et al.CBAM:convolutional block attention module[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:3-19.
 [27] LI C, YIN W, JIANG H, et al.An efficient augmented Lagrangian method with applications to total variation minimization[J].Computational Optimization and Applications, 2013, 56(3):507-530.
 |