[1] |
金紫嫣,张娟,李向军,等.一种带标签的协同过滤广告推荐算法[J].计算机工程,2018,44(4):236-242,247.
|
[2] |
MCAULEY J,LESKOVEC J.From amateurs to connoisseurs:modeling the evolution of user expertise through online reviews [C]//Proceedings of the 22nd International Conference on World Wide Web. York,USA:ACM Press,2015:897-908.
|
[3] |
MNIH A,SALAKHUTDINOV R.Probabilistic matrix factorization [C]//Proceedings of the 20th International Conference on Neural Information Processing Systems.New York,USA:Curran Associates Inc.,2008:1257-1264.
|
[4] |
WANG Chong,BLEI D M.Collaborative topic modeling for recommending scientific articles [C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2011:448-456.
|
[5] |
MCAULEY J,JURE L.Hidden factors and hidden topics:understanding rating dimensions with review text [C]//Proceedings of the 7th ACM Conference on Recommender Systems.New York,USA:ACM Press,2013:165-172.
|
[6] |
DIAO Qiming,QIU Minghui,WU Chaoyuan,et al.Jointly modeling aspects,ratings and sentiments for movie recommendation[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2014:193-202.
|
[7] |
LING Guang,LYU M R,KING R.Ratings meet reviews,a combined approach to recommend [C]//Proceedings of the 8th ACM Conference on Recom-mender Systems.New York,USA:ACM Press,2014:105-112.
|
[8] |
CHEN Zhiyuan,LIU Bing.Lifelong machine learning[M].San Rafael,USA:Morgan and Claypool Publishers,2016.
|
[9] |
HU Guangneng,DAI Xinyu,SONG Yunya,et al.A synthetic approach for recommendation:combining ratings,social relations,and reviews[C]//Proceedings of the 24th International Conference on Artificial Intelligence.New York,USA:ACM Press,2015:1756-1762.
|
[10] |
THRUN S.Is learning the n-th thing any easier than learning the first[C]//Proceedings of the 8th International Con-ference on Neural Information Processing Systems.Cambridge,USA:MIT Press,1996:640-646.
|
[11] |
FEI Geli,WANG Shuai,LIU Bing.Learning cumulatively to become more knowledgeable[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2016:1565-1574.
|
[12] |
SHU Lei,LIU Bin,XU Bin,et al.Lifelong-rl:lifelong relaxation labeling for separating entities and aspects in opinion targets [EB/OL].[2018-03-24].https://www.aclweb.org/anthology/D16-1022.
|
[13] |
CHEN Zhiyuan,LIU Bing.Topic modeling using topics from many domains,lifelong learning and big data [C]//Proceedings of International Conference on Machine Learning.New York,USA:ACM Press,2014:703-711.
|
[14] |
KAPOOR A,HORVITZ E.Principles of lifelong learning for predictive user modeling [C]//Proceedings of International Conference on User Modeling.Berlin,Germany:Springer,2007:37-46.
|
[15] |
LIU Qian,LIU Bing,ZHANG Yuanlin,et al.Improving opinion aspect extraction using semantic similarity and aspect associations [EB/OL].[2018-03-24].https://aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/1 1973/12051.
|
[16] |
BLEI D M,NG A Y,JORDAN M I.Latent dirichlet allocation[J].Journal of Machine Learning Research,2003,3:993-1022.
|