[1] CAI Zhishan,CHEN Musheng.Study on multi-focus image fusion method based on wavelet transfrom[J].Laser and Optoelectronics Progress,2015,52(9):117-121.(in Chinese) 蔡植善,陈木生.基于小波变换的多聚焦图像融合方法研究[J].激光与光电子学进展,2015,52(9):117-121. [2] JIANG Zetao,WU Hui,ZHOU Xiaoling.Infrared and visible image fusion algorithm based on improved guided filtering and dual-channel spiking cortical model[J].Acta Optica Sinica,2018,38(2):112-120.(in Chinese) 江泽涛,吴辉,周哓玲.基于改进引导滤波和双通道脉冲发放皮层模型的红外与可见光图像融合算法[J].光学学报,2018,38(2):112-120. [3] MA Jiayi,MA Yong,LI Chang.Infrared and visible image fusion methods and applications:a survey[J].Information Fusion,2019,45:153-178. [4] TOET A.Image fusion by a ratio of low-pass pyramid[J].Pattern Recognition Letters,1989,9(4):245-253. [5] LI H,MANJUNATH B S,MITRA S K.Multisensor image fusion using the wavelet transform[J].Graphical Models and Image Processing,1995,57(3):235-245. [6] ZHANG Qiang,GUO Baolong.Multifocus image fusion using the nonsubsampled contourlet transform[J].Signal Processing,2009,89(7):1334-1346. [7] FARBMAN Z,FATTAL R,LISCHINSKI D,et al.Edge-preserving decompositions for multi-scale tone and detail manipulation[J].ACM Transactions on Graphics,2008,27(3):1-10. [8] HERMESSI H,MOURALI O,ZAGROUBA E.Multimodal image fusion based on non-subsampled shearlet transformand neuro-fuzzy[C]//Proceedings of International Workshop on Representations,Analysis and Recognition of Shape and Motion from Imaging Data.Berlin,Germany:Springer,2017:161-175. [9] KUTYNIOK G,LABATE D.Introduction to shearlets[EB/OL].[2019-04-15].https://link.springer.com/chapter/10.1007%2F978-0-8176-8316-0_1. [10] EASLEY G,LABATE D,LIM W Q.Sparse directional image representations using the discrete shearlet transform[J].Applied and Computational Harmonic Analysis,2008,25(1):25-46. [11] LI Jiao,YANG Yanchun,DANG Jianwu,et al.NSST and guided filtering for multi-focus image fusion algorithm[J].Journal of Harbin Institute of Technology,2018,50(11):145-152.(in Chinese) 李娇,杨艳春,党建武,等.NSST与引导滤波相结合的多聚焦图像融合算法[J].哈尔滨工业大学学报,2018,50(11):145-152. [12] GAO Yuan,JIA Ziting,QIN Pinle,et al.Medical imagefusion based on compressive sensing and adaptive PCNN[J].Computer Engineering,2018,44(9):224-229.(in Chinese) 高媛,贾紫婷,秦品乐,等.基于压缩感知与自适应PCNN的医学图像融合[J].计算机工程,2018,44(9):224-229. [13] ZOU Jiabin,SUN Wei.Multi-focus image fusion based on lifting stationary wavelet transform and joint structural group sparse representation[J].Journal of Computer Applications,2018,38(3):859-865.(in Chinese) 邹佳彬,孙伟.基于提升静态小波变换与联合结构组稀疏表示的多聚焦图像融合[J].计算机应用,2018,38(3):859-865. [14] JIAO Jiao,WU Lingda,YU Shaobo,et al.Image fusion method using multi-scale analysis and improved PCNN[J].Journal ofComputer-Aided Design and Computer Graphics,2019,31(6):988-996.(in Chinese) 焦姣,吴玲达,于少波,等.混合多尺度分析和改进PCNN相结合的图像融合方法[J].计算机辅助设计与图形学学报,2019,31(6):988-996. [15] RAJKUMAR S,MOULI P.Infrared and visible image fusion using entropy and neuro-fuzzy concepts[C]//Proceedings of the 48th Annual Convention of ComputerSociety of India.Berlin,Germany:Springer,2014:93-100. [16] LIU Y,CHEN X,WARD R,et al.Image fusion with convolutional sparse representation[J].IEEE Signal Processing Letters,2016,23(12):1882-1886. [17] LIU Yu,CHEN Xun,CHENG Juan,et al.Infrared and visible image fusion with convolutional neural networks[J].International Journal of Wavelets,Multiresolution and Information Processing,2018,16(3):521-528. [18] LI H,WU X J,KITTLER J.Infrared and visible image fusion using a deep learning framework[C]//Proceedings of the 24th International Conference onPattern Recognition.Washington D.C.,USA:IEEE Press,2018:2705-2710. [19] GAO Guorong,XU Luping,ZHU Fengdong.Multi-focus image fusion based on non-subsampled shearlet transform[J].IET Image Processing,2013,7(6):633-639. [20] GUO Xiaopeng,NIE Rencan,CAO Jinde,et al.Fully convolutional network-based multifocus image fusion[J].Neural Computation,2018,30(7):1775-1800. [21] LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:3431-3440. [22] MA Jinlei,ZHOU Zhiqiang,WANG Bo,et al.Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J].Infrared Physics and Technology,2017,82:8-17. [23] ZHOU Xin,WANG Wei.Infrared and visible image fusion based on tetrolet transform[C]//Proceedings of 2015 International Conference on Communications,Signal Processing,and Systems.Berlin,Germany:Springer,2016:701-708. [24] ZHANG Yu,ZHANG Lijia,BAI Xiangzhi,et al.Infrared and visual image fusion through infrared feature extraction and visual information preservation[J].Infrared Physics and Technology,2017,83(5):227-237. [25] MA Jiayi,CHEN Chen,LI Chang,et al.Infrared and visible image fusion via gradient transfer and total variation minimization[J].Information Fusion,2016,31(9):100-109. [26] LI H,WU X J,KITTLER J.Infrared and visible image fusion using a deep learning framework[EB/OL].[2019-04-15].https://arxiv.org/abs/1804.06992?context=cs. [27] MA Yong,CHEN Jun,CHEN Chen,et al.Infrared and visible image fusion using total variation model[J].Neurocomputing,2016,202(8):12-19. [28] HOSSNY M,NAHAVANDI S,CREIGHTON D,et al.Image fusion performance metric based on mutual information and entropy driven quadtree decomposition[J].Electronics Letters,2010,46(18):1266-1268. [29] ZHAO Chunhui,SHAO Guofeng,MA Lijuan,et al.Image fusion algorithm based on redundant-lifting NSWMDA and adaptive PCNN[J].Optik,2014,125(20):6247-6255. [30] XYDEAS C S,PETROVIC' V.Objective image fusion performance measure[J].Electronics Letters,2000,36(4):308-315. [31] HAN Yu,CAI Yunze,CAO Yin,et al.A new image fusion performance metric based on visual information fidelity[J].Information Fusion,2013,14(2):127-135. |