[1] CRUZAT A,QAZI Y,HAMRAH P.In vivo confocal microscopy of corneal nerves in health and disease[J].The Ocular Surface,2017,15(1):15-47. [2] NISHIDA T,CHIKAMA T,SAWA M,et al.Differential contributions of impaired corneal sensitivity and reduced tear secretion to corneal epithelial disorders[J].Japanese Journal of Ophthalmology,2012,56(1):20-25. [3] HERTZ P,BRIL V,ORSZAG A,et al.Reproducibility of in vivo corneal confocal microscopy as a novel screening test for early diabetic sensorimotor polyneuropathy[J].Diabetic Medicine,2011,28(10):1253-1260. [4] KALLINIKOS P,BERHANU M,O'DONNELL C,et al.Corneal nerve tortuosity in diabetic patients with neuropathy[J].Investigative Ophthalmology & Visual Science,2004,45(2):418-422. [5] RUGGERI A,SCARPA F,GRISAN E.Analysis of corneal images for the recognition of nerve structures[C]//Proceedings of 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.Washington D.C.,USA:IEEE Press,2006:4739-4742. [6] DABBAH M A,GRAHAM J,PETROPOULOS I N,et al.Automatic analysis of diabetic peripheral neuropathy using multi-scale quantitative morphology of nerve fibres in corneal confocal microscopy imaging[J].Medical Image Analysis,2011,15(5):738-747. [7] FERREIRA A,MORGADO A M,SILVA J S.A method for corneal nerves automatic segmentation and morphometric analysis[J].Computer Methods and Programs in Biomedicine,2012,107(1):53-60. [8] GUIMARÃES P,WIGDAHL J,RUGGERI A.A fast and efficient technique for the automatic tracing of corneal nerves in confocal microscopy[J].Translational Vision Science & Technology,2016,5(5):436-444. [9] ANNUNZIATA R,KHEIRKHAH A,HAMRAH P,et al.Boosting hand-crafted features for curvilinear structure segmentation by learning context filters[EB/OL].[2019-11-02].http://staff.computing.dundee.ac.uk/rannunziata/files/MICCAI%202015%20Bosting%20HCFs%20for%20curvilinear%20structures%20segmentation%20by%20learning%20context%20filters.pdf. [10] ZHU Hui,QIN Pinle.U-Net pulmonary nodule detection algorithm based on multi-scale feature structure[J].Computer Engineering,2019,45(4):260-267.(in Chinese)朱辉,秦品乐.基于多尺度特征结构的U-Net肺结节检测算法[J].计算机工程,2019,45(4):260-267. [11] LIU Zhe,ZHANG Xiaolin,SONG Yuqing,et al.Liver segmentation with improved U-Net and Morphsnakes algorithm[J].Journal of Image and Graphics,2018,23(8):1254-1262.(in Chinese)刘哲,张晓林,宋余庆,等.结合改进的U-Net和Morphsnakes的肝脏分割[J].中国图象图形学报,2018,23(8):1254-1262. [12] LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:3431-3440. [13] RONNEBERGER O,FISCHER P,BROX T.U-Net:convolutional networks for biomedical image segmentation[EB/OL].[2019-11-02].https://arxiv.org/pdf/1505.04597.pdf. [14] SHANKARANARAYANA S M,RAM K,MITRA K,et al.Joint optic disc and cup segmentation using fully convolutional and adversarial networks[C]//Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention;International Workshop on Fetal and Infant Image Analysis.Berlin,Germany:Springer,2017:168-176. [15] ALOM M Z,YAKOPCIC C,TAHA T M,et al.Nuclei segmentation with recurrent residual convolutional neural networks based U-Net (R2U-Net)[C]//Proceedings of NAECON 2018-IEEE National Aerospace and Electronics Conference.Washington D.C.,USA:IEEE Press,2018:228-233. [16] OKTAY O,SCHLEMPER J,FOLGOC L L,et al.Attention U-Net:learning where to look for the pancreas[EB/OL].[2019-11-02].https://arxiv.org/abs/1804.03999. [17] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2019-11-02].https://arxiv.org/abs/1409.1556. [18] SZEGEDY C,LIU W,JIA Y Q,et al.Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:1-9. [19] SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:2818-2826. [20] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:770-778. [21] GAO Shanghua,CHENG Mingming,ZHAO Kai,et al.Res2Net:a new multi-scale backbone architecture[EB/OL].[2019-11-02].https://arxiv.org/pdf/1904.01169.pdf. [22] HU J,SHEN L,SAMUEL A,et al.Squeeze-and-excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(8):2011-2013. |