[1] 刘丹, 马世霞.融合超像素3D与Appearance特征的可行驶区域检测[J].计算机工程, 2017, 43(7):293-297. LIU D, MA S X.Travelable area detection fusing superpixel 3D and apperance feature[J].Computer Engineering, 2017, 43(7):293-297.(in Chinese) [2] PARK Y, LEPETIT V, WOO W.Multiple 3D object tracking for augmented reality[C]//Proceedings of the 7th International Symposium on Mixed and Augmented Reality.Washington D.C., USA:IEEE Press, 2008:117-120. [3] 葛俊彦, 史金龙, 周志强, 等.基于三维检测网络的机器人抓取方法[J].仪器仪表学报, 2021, 41(8):146-153. GE J Y, SHI J L, ZHOU Z Q, et al.A robotic grasping method based on three-dimensional detection network[J].Chinese Journal of Scientific Instrument, 2021, 41(8):146-153.(in Chinese) [4] 方海国.基于深度学习的3D目标检测与抓取研究[D].湘潭:湘潭大学, 2020. FANG H G.Research on 3D object detection and grasping technology based on deep learning[D].Xiangtan:Xiangtan University, 2020.(in Chinese) [5] 迟旭然, 裴伟, 朱永英, 等.Fast Stereo-RCNN三维目标检测算法[J].小型微型计算机系统, 2022, 43(10):2157-2167. CHI X R, PEI W, ZHU Y Y, et al.Fast Stereo-RCNN 3D target detection algorithm[J].Journal of Chinese Computer Systems, 2022, 43(10):2157-2167.(in Chinese) [6] QIN Z Y, WANG J L, LU Y.MonoGRNet:a geometric reasoning network for monocular 3D object localization[EB/OL].[2021-07-20].https://arxiv.org/pdf/1811.10247.pdf. [7] WANG Y, CHAO W L, GARG D, et al.Pseudo-LiDAR from visual depth estimation:bridging the gap in 3D object detection for autonomous driving[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:8437-8445. [8] 于洁潇, 张美琪, 苏育挺.基于双目视觉的三维车辆检测算法[J].激光与光电子学进展, 2021, 58(2):301-306. YU J X, ZHANG M Q, SU Y T.Three-dimensional vehicle detection algorithm based on binocular vision[J].Laser & Optoelectronics Progress, 2021, 58(2):301-306.(in Chinese) [9] SHIN K, KWON Y P, TOMIZUKA M.RoarNet:a robust 3D object detection based on region approximation refinement[C]//Proceedings of Intelligent Vehicles Symposium.Washington D.C., USA:IEEE Press, 2019:2510-2515. [10] HUANG T T, LIU Z, CHEN X W, et al.EPNet:enhancing point features with image semantics for 3D object detection[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2020:35-52. [11] 王海, 刘明亮, 蔡英凤, 等.基于激光雷达与毫米波雷达融合的车辆目标检测算法[J].江苏大学学报(自然科学版), 2021, 42(4):389-394. WANG H, LIU M L, CAI Y F, et al.Vehicle target detection algorithm based on fusion of lidar and millimeter wave radar[J].Journal of Jiangsu University (Natural Science Edition), 2021, 42(4):389-394.(in Chinese) [12] 江泽宇, 赵芸.基于边缘卷积的三维目标识别算法[J].浙江科技学院学报, 2021, 33(3):214-219. JIANG Z Y, ZHAO Y.3D target recognition algorithm based on edge convolution[J].Journal of Zhejiang University of Science and Technology, 2021, 33(3):214-219.(in Chinese) [13] 刘高天, 段锦, 范祺, 等.基于改进RFBNet算法的遥感图像目标检测[J].吉林大学学报(理学版), 2021, 59(5):1188-1198. LIU G T, DUAN J, FAN Q, et al.Target detection for remote sensing image based on improved RFBNet algorithm[J].Journal of Jilin University(Science Edition), 2021, 59(5):1188-1198.(in Chinese) [14] ZHOU Y, TUZEL O.VoxelNet:end-to-end learning for point cloud based 3D object detection[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:4490-4499. [15] LANG A H, VORA S, CAESAR H, et al.PointPillars:fast encoders for object detection from point clouds[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:12689-12697. [16] SHI W J, RAJKUMAR R.Point-GNN:graph neural network for 3D object detection in a point cloud[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:1708-1716. [17] 杨永光.基于点云的目标检测方法研究[D].南京:南京邮电大学, 2020. YANG Y G.Research on point cloud based on object detection algorithm[D].Nanjing:Nanjing University of Posts and Telecommunications, 2020.(in Chinese) [18] BERG A C, FU C Y, SZEGEDY C, et al.SSD:single shot multi-box detector[C]//Proceedings of the European Conference on Computer Vision.Berlin, Germany:Springer, 2016:21-37. [19] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.New York, USA:ACM Press, 2017:6000-6010. [20] ZHAO G X, LIN J Y, ZHANG Z Y, et al.Sparse Transformer:concentrated attention through explicit selection[EB/OL].[2021-07-20].https://arxiv.org/abs/1912.11637. [21] BA J L, KIROS J R, HINTON G E.Layer normalization[EB/OL].[2021-07-20].https://arxiv.org/pdf/1607.06450.pdf. [22] YAN Y, MAO Y, LI B.SECOND:sparsely embedded convolutional detection[J].Sensors, 2018, 18(10):3337. [23] XU J, MA Y X, HE S H, et al.3D-GIoU:3D generalized intersection over union for object detection in point cloud[J].Sensors, 2019, 19(19):4093-4108. [24] SHI S S, WANG Z, SHI J P, et al.From points to parts:3D object detection from point cloud with part-aware and part-aggregation network[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(6):836-842. [25] SHI S S, WANG X G, LI H S.PointRCNN:3D object proposal generation and detection from point cloud[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:770-779. [26] LIU Z, ZHAO X, HUANG T T, et al.TANet:robust 3D object detection from point clouds with triple attention[C]//Proceedings of the 24th AAAI Conference on Artificial Intelligence.New York, USA:AAAI Press, 2020:11677-11684. |