[1] 宋宇鹏, 边继龙, 安翔, 等.基于注意力机制的DenseNet模型的树种识别应用[J].实验室研究与探索, 2020, 39(7):127-132, 178. SONG Y P, BIAN J L, AN X, et al.Application of tree species recognition based on attention mechanism DenseNet model[J].Laboratory Research and Exploration, 2020, 39(7):127-132, 178.(in Chinese) [2] XU H F, ZHANG J Y.AANet:adaptive aggregation network for efficient stereo matching[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:1-10. [3] 齐永锋, 马中玉.基于深度残差网络的多损失头部姿态估计[J].计算机工程, 2020, 46(12):247-253. QI Y F, MA Z Y.Multi-loss head pose estimation based on deep residual network[J].Computer Engineering, 2020, 46(12):247-253.(in Chinese) [4] LIU Z Z, CHEN T D.Distance measurement system based on binocular stereo vision[C]//Proceedings of International Joint Conference on Artificial Intelligence.Washington D.C., USA:IEEE Press, 2009:1-10. [5] SCHARSTEIN D, SZELISKI R.A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J].International Journal of Computer Vision, 2002, 47(1):7-42. [6] SONG X, ZHAO X, FANG L J, et al.Edgestereo:an effective multi-task learning network for stereo matching and edge detection[J].International Journal of Computer Vision, 2020, 128(5):910-930. [7] MAYER N, ILG E, HAUSSER P, et al.A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:1-10. [8] KENDALL A, MARTIROSYAN H, DASGUPTA S, et al.End-to-end learning of geometry and context for deep stereo regression[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:1-10. [9] GU X D, FAN Z W, ZHU S Y, et al.Cascade cost volume for high-resolution multi-view stereo and stereo matching[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:1-11. [10] CHEN R, HAN S F, XU J, et al.Visibility-aware point-based multi-view stereo network[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10):3695-3708. [11] NEWELL A, YANG K Y, JIA D.Stacked hourglass networks for human pose estimation[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:483-499. [12] CHANG J R, CHEN Y S.Pyramid stereo matching network[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:1-10. [13] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:1-10. [14] HE K M, ZHANG X Y, REN S Q, et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(9):1904-1916. [15] GUO X Y, YANG K, YANG W K, et al.Group-wise correlation stereo network[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:1-10. [16] YANG M K, YU K, ZHANG C, et al.DenseASPP for semantic segmentation in street scenes[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:1-11. [17] WOO S, PARK J, LEE J Y, et al.CBAM:convolutional block attention module[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:3-19. [18] 贾瑞明, 李阳, 李彤, 等.多层级特征融合结构的单目图像深度估计网络[J].计算机工程, 2020, 46(12):207-214. JIA R M, LI Y, LI T, et al.Monocular image depth estimation network based on multi-level feature fusion structure[J].Computer Engineering, 2020, 46(12):207-214.(in Chinese) [19] HUANG G, LIU Z, LAURENS V, et al.Densely connected convolutional networks[C]//Proceedings of IEEE Computer Society.Washington D.C., USA:IEEE Press, 2016:1-12. [20] CHEN L C, PAPANDREOU G, KOKKINOS I, et al.DeepLab:semantic image segmentation with deep convolutional Nets, atrous convolution, and fully connected CRFs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848. [21] GIRSHICK R.Fast R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2015:1-12. [22] 杨蕙同, 雷亮, 林永春.基于多尺度注意力特征融合的双目深度估计算法[J/OL].激光与光电子学进展:1-10[2021-06-20].http://kns.cnki net/kcms/detail/31.1690.TN.20210802.1731.080.html. YANG H T, LEI L, LIN Y C.Binocular depth estimation algorithm based on multi-scale attention feature fusion[J/OL].Laser & Optoelectronics Progress:HO[2021-06-20].http://kns.cnki net/kcms/detail/31.1690.TN.20210802.1731.080.html.(in Chinese) |