1 |
童巍, 吴翔. 轮胎起重机集卡防吊起系统的研究与应用. 起重运输机械, 2017,(12): 95- 97.
|
|
TONG W, WU X. Research and application of anti-lifting system for tire crane. Hoisting and Conveying Machinery, 2017,(12): 95- 97.
|
2 |
BRINKMANN B. Operations systems of container terminals: a compendious overview. Berlin, Germany: Springer, 2011.
|
3 |
黄伟, 赵德安, 刘晓洋. 基于机器视觉的港口集装箱卡车防吊方法研究. 软件导刊, 2019, 18(5): 37- 40.
|
|
HUANG W, ZHAO D A, LIU X Y. Research on port container truck anti-lifting method based on machine version. Software Guide, 2019, 18(5): 37- 40.
|
4 |
王润生. 基于目标检测与跟踪的集装箱卡车防吊起研究[D]. 东营: 中国石油大学(华东), 2020.
|
|
WANG R S. Research on anti-lifting of container truck based on target detection and tracking[D]. Dongying: China University of Petroleum (Huadong), 2020. (in Chinese)
|
5 |
刘燕欣, 田彤坤, 唐波, 等. 基于机器视觉的港口集卡防吊起系统. 中国质量, 2020,(12): 45- 49.
|
|
LIU Y X, TIAN T K, TANG B, et al. Anti-hoisting system for port container trucks based on machine vision. China Quality, 2020,(12): 45- 49.
|
6 |
孙嘉, 张建辉, 卜佑军, 等. 基于CNN-BiLSTM模型的日志异常检测方法. 计算机工程, 2022, 48(7): 151-158, 167.
URL
|
|
SUN J, ZHANG J H, BU Y J, et al. Log anomaly detection method based on CNN-BiLSTM model. Computer Engineering, 2022, 48(7): 151-158, 167.
URL
|
7 |
KWON D H, KIM J B, HEO J S, et al. Time series classification of cryptocurrency price trend based on a recurrent LSTM neural network. Journal of Information Processing Systems, 2019, 15(3): 694- 706.
|
8 |
VASWANI A, SHAZEER N, PAMMAR N, et al. Attention is all you need[C]//Proceedings of NIPS'17. Cambridge, USA: MIT Press, 2017: 30-39.
|
9 |
ZERVEAS G, JAYARAMAN S, PATEL D, et al. A transformer-based framework for multivariate time series representation learning[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2021: 2114-2124.
|
10 |
|
11 |
孙彦玺, 赵婉婉, 武东辉, 等. 基于卷积长短时记忆网络的人体行为识别研究. 计算机工程, 2021, 47(10): 260- 268.
URL
|
|
SUN Y X, ZHAO W W, WU D H, et al. Research of human activity recognition based on convolutional long short-term memory network. Computer Engineering, 2021, 47(10): 260- 268.
URL
|
12 |
ZHAO B D, LU H Z, et al. Convolutional neural networks for time series classification. Journal of Systems Engineering and Electronics, 2017, 28(1): 162- 169.
doi: 10.21629/JSEE.2017.01.18
|
13 |
WANG Z G, YAN W Z, OATES T. Time series classification from scratch with deep neural networks: a strong baseline[C]//Proceedings of International Joint Conference on Neural Networks. Washington D. C., USA: IEEE Press, 2017: 1578-1585.
|
14 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
15 |
RAHIMILARKI R, GAO Z W, JIN N L, et al. Convolutional neural network fault classification based on time-series analysis for benchmark wind turbine machine. Renewable Energy, 2022, 185, 916- 931.
doi: 10.1016/j.renene.2021.12.056
|
16 |
TAN M, LE Q. Efficientnet: rethinking model scaling for convolutional neural networks[C]//Proceedings of International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2019: 6105-6114.
|
17 |
ALEX S A, JHANJHI N Z, HUMAYUN M, et al. Deep LSTM model for diabetes prediction with class balancing by SMOTE. Electronics, 2022, 11(17): 2737.
doi: 10.3390/electronics11172737
|
18 |
SWANA E F, DOORSAMY W, BOKORO P. Tomek link and SMOTE approaches for machine fault classification with an imbalanced dataset. Sensors, 2022, 22(9): 3246.
doi: 10.3390/s22093246
|
19 |
PETMEZAS G, CHEIMARIOTIS G A, STEFANOPOULOS L, et al. Automated lung sound classification using a hybrid CNN-LSTM network and focal loss function. Sensors, 2022, 22(3): 1232.
doi: 10.3390/s22031232
|
20 |
CHEN Y C. A tutorial on kernel density estimation and recent advances. Biostatistics & Epidemiology, 2017, 1(1): 161- 187.
|
21 |
LUI W, LI Y, URTASUN R, et al. Understanding the effective receptive field in deep convolutional neural networks[C]//Proceedings of NIPS'17. Cambridge, USA: MIT Press, 2016, 29.
|
22 |
HOANG V T, JO K H. Practical analysis on architecture of EfficientNet[C]//Proceedings of the 14th International Conference on Human System Interaction. Washington D. C., USA: IEEE Press, 2021: 1-4.
|
23 |
DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2009: 248-255.
|
24 |
YANG Z, XU B B, LUO W, et al. Autoencoder-based representation learning and its application in intelligent fault diagnosis: a review. Measurement, 2022, 189, 110460.
doi: 10.1016/j.measurement.2021.110460
|
25 |
LING C X, HUANG J, ZHANG H. AUC: a better measure than accuracy in comparing learning algorithms. Berlin, Germany: Springer, 2003.
|
26 |
CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2016: 785-794.
|
27 |
常婷婷, 翟江涛, 戴跃伟. 一种基于Xgboost的Skype时间式隐信道检测方法. 计算机工程, 2021, 47(7): 88- 94.
URL
|
|
CHANG T T, ZHAI J T, DAI Y W. An Xgboost-based method for detecting covert timing channel of Skype. Computer Engineering, 2021, 47(7): 88- 94.
URL
|
28 |
IBRAHEM AHMED OSMAN A, NAJAH AHMED A, CHOW M F, et al. Extreme gradient boosting (Xgboost) model to predict the groundwater levels in Selangor Malaysia. Ain Shams Engineering Journal, 2021, 12(2): 1545- 1556.
doi: 10.1016/j.asej.2020.11.011
|
29 |
AKIBA T, SANO S, YANASE T, et al. Optuna: a next-generation hyperparameter optimization framework[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2019: 2623-2631.
|