1 |
RAZA U, CAMERRA A, MURPHY A L, et al. Practical data prediction for real-world wireless sensor networks. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(8): 2231- 2244.
doi: 10.1109/TKDE.2015.2411594
|
2 |
PALPANAS T. Data series management: the road to big sequence analytics. ACM SIGMOD Record, 2015, 44(2): 47- 52.
doi: 10.1145/2814710.2814719
|
3 |
SHASHA D. Tuning time series queries in finance: case studies and recommendations. IEEE Data Engineering Bulletin, 1999, 22(2): 40- 46.
|
4 |
ECHIHABI K, ZOUMPATIANOS K, PALPANAS T, et al. Return of the Lernaean Hydra: experimental evaluation of data series approximate similarity search. Proceedings of the VLDB Endowment, 2019, 13(3): 403- 420.
doi: 10.14778/3368289.3368303
|
5 |
李敏, 于长永, 张峰, 等. 基于LSH的时间序列DTW相似性查询. 小型微型计算机系统, 2019, 40(10): 2155- 2159.
doi: 10.3969/j.issn.1000-1220.2019.10.024
|
|
LI M, YU C Y, ZHANG F, et al. LSH and DTW-based for searching similar time series. Journal of Chinese Computer Systems, 2019, 40(10): 2155- 2159.
doi: 10.3969/j.issn.1000-1220.2019.10.024
|
6 |
PAPARRIZOS J, LIU C W, ELMORE A J, et al. Debunking four long-standing misconceptions of time-series distance measures[C]//Proceedings of 2020 ACM SIGMOD International Conference on Management of Data. New York, USA: ACM Press, 2020: 1887-1905.
|
7 |
WU J, WANG P, PAN N, et al. KV-match: a subsequence matching approach supporting normalization and time warping[C]//Proceedings of the 35th International Conference on Data Engineering. Washington D. C., USA: IEEE Press, 2019: 866-877.
|
8 |
LINARDI M, PALPANAS T. Scalable, variable-length similarity search in data series: the ULISSE approach. Proceedings of the VLDB Endowment, 2018, 11(13): 2236- 2248.
|
9 |
LINARDI M, PALPANAS T. Scalable data series subsequence matching with ULISSE. The VLDB Journal, 2020, 29(6): 1449- 1474.
|
10 |
KEOGH E, PALPANAS T, ZORDAN V B, et al. Indexing large human-motion databases[C]//Proceedings of the 30th International Conference on Very Large Data Bases. New York, USA: ACM Press, 2014: 780-791.
|
11 |
RAKTHANMANON T, CAMPANA B, MUEEN A, et al. Addressing big data time series: mining trillions of time series subsequences under dynamic time warping. ACM Transactions on Knowledge Discovery from Data, 2013, 7(3): 1- 31.
|
12 |
SHEN Y, CHEN Y, KEOGH E, et al. Accelerating time series searching with large uniform scaling[C]//Proceedings of 2018 SIAM International Conference on Data Mining. Philadelphia, USA: Society for Industrial and Applied Mathematics, 2018: 234-242.
|
13 |
DANNENBERG R B, BIRMINGHAM W P, TZANETAKIS G P, et al. The MUSART testbed for query-by-humming evaluation. Computer Music Journal, 2004, 28(2): 34- 48.
|
14 |
LI Y, WANG T S, SHUM H Y. Motion texture: a two-level statistical model for character motion synthesis[C]//Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques. New York, USA: ACM Press, 2002: 465-472.
|
15 |
ROSE C, GUENTER B, BODENHEIMER B, et al. Efficient generation of motion transitions using spacetime constraints[C]//Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. New York, USA: ACM Press, 1996: 147-154.
|
16 |
WAIYAWUTH E, RATANAMAHATANA C A. Efficient multimedia time series data retrieval under uniform scaling and normalization[C]//Proceedings of the 30th European Conference on IR Research. Washington D. C., USA: IEEE Press, 2008: 506-513.
|
17 |
FU A W C, KEOGH E, LAU L Y H, et al. Scaling and time warping in time series querying. The VLDB Journal, 2008, 17(4): 899- 921.
|
18 |
LINARDI M, ZHU Y, PALPANAS T, et al. Matrix profile X: VALMOD-scalable discovery of variable-length motifs in data series[C]//Proceedings of 2018 International Conference on Management of Data. New York, USA: ACM Press, 2018: 1053-1066.
|
19 |
KEOGH E, CHAKRABARTI K, PAZZANI M, et al. Dimensionality reduction for fast similarity search in large time series databases. Knowledge and Information Systems, 2001, 3(3): 263- 286.
|
20 |
YI B K, FALOUTSOS C. Fast time sequence indexing for arbitrary Lp norms[C]//Proceedings of the 26th International Conference on VLDB. New York, USA: ACM Press, 2000: 385-394.
|
21 |
LIN J, KEOGH E, LONARDI S, et al. A symbolic representation of time series, with implications for streaming algorithms[C]//Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery. New York, USA: ACM Press, 2003: 2-11.
|
22 |
SHIEH J, KEOGH E. iSAX: indexing and mining terabyte sized time series[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2008: 623-631.
|
23 |
LIN J, KEOGH E, WEI L, et al. Experiencing SAX: a novel symbolic representation of time series. Data Mining and Knowledge Discovery, 2007, 15(2): 107- 144.
|
24 |
RAKTHANMANON T, CAMPANA B, MUEEN A, et al. Searching and mining trillions of time series subsequences under dynamic time warping[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2012: 262-270.
|
25 |
|
26 |
TERZANO M G, PARRINO L, SMERIERI A, et al. Atlas, rules, and recording techniques for the scoring of Cyclic Alternating Pattern(CAP) in human sleep. Sleep Medicine, 2002, 3(2): 187- 199.
|