[1] 曹刚.数字图像操作取证技术研究[D].北京:北京交通大学, 2013.(in Chinese) CAO G.Research on digital image manipulation forensics[D].Beijing:Beijing Jiaotong University, 2013. [2] 张韩钰, 吴志昊, 徐勇, 等.增强卷积神经网络的人脸篡改检测方法[J].计算机工程与应用, 2021, 57(8):220-224. ZHANG H Y, WU Z H, XU Y, et al.Face forensics detection method based on enhanced convolutional neural networks[J].Computer Engineering and Applications, 2021, 57(8):220-224.(in Chinese) [3] PAN X, ZHANG X, YU S.Exposing image splicing with inconsistent local noise variances[C]//Proceedings of 2012 IEEE International Conference on Computational Photography.Washington D.C., USA:IEEE Press, 2012:1-10. [4] FERRARA P, BIANCHI T, DE ROSA A, et al.Image forgery localization via fine-grained analysis of CFA artifacts[J].IEEE Transactions on Information Forensics and Security, 2012, 7(5):1566-1577. [5] YE S, SUN Q, CHANG E C.Detecting digital image forgeries by measuring inconsistencies of blocking artifact[C]//Proceedings of 2007 IEEE International Conference on Multimedia and Expo.Washington D.C., USA:IEEE Press, 2007:12-15. [6] 周治平, 胡成燕, 黄浩.基于色彩一致性的图像模糊篡改检测[J].计算机工程, 2016, 42(1):237-242. ZHOU Z P, HU C Y, HUANG H.Image blur forgery detection based on color consistency[J].Computer Engineering, 2016, 42(1):237-242.(in Chinese) [7] BAYAR B, STAMM M C.A deep learning approach to universal image manipulation detection using a new convolutional layer[C]//Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security.New York, USA:ACM Press, 2016:5-10. [8] MAYER O, STAMM M C.Forensic similarity for digital images[J].IEEE Transactions on Information Forensics and Security, 2019, 15(4):1331-1346. [9] PHAN X H, LE T T, NGUYEN C T, et al.Preserving spatial information to enhance performance of image forgery classification[C]//Proceedings of 2019 International Conference on Advanced Technologies For Communications.Washington D.C., USA:IEEE Press, 2019:50-55. [10] ZHANG Y, GOH J, WIN L L, et al.Image region forgery detection:a deep learning approach[EB/OL].[2020-10-10].https://oar.a-star.edu.sg/. [11] BAPPY J H, ROY-CHOWDHURY A K, BUNK J, et al.Exploiting spatial structure for localizing manipulated image regions[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:4970-4979. [12] SALLOUM R, REN Y, KUO C.Image splicing localization using a multi-task fully convolutional network[J].Journal of Visual Communication and Image Representation, 2018, 51:201-209. [13] SIMON Y K, ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2020-10-10].https://ui.adsabs.harvard.edu/abs/2014arXiv1409.1556S/. [14] CUN X, PUN C M.Image splicing localization via semi-global network and fully connected conditional random fields[C]//Proceedings of European Conference on Computer Vision.The Netherlands:Springer, 2018:10-20. [15] ZHOU P, HAN X, MORARIU V I, et al.Learning rich features for image manipulation detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:1053-1061. [16] REN S, HE K, GIRSHICK R, et al.Faster R-CNN:towards real-time object detection with region proposal networks[C]//Proceedings of Advances in Neural Information Processing Systems.Washington D.C., USA:IEEE Press, 2015:91-99. [17] FRIDRICH J, KODOVSKY J.Rich models for steganalysis of digital images[J].IEEE Transactions on Information Forensics and Security, 2012, 7(3):868-882. [18] HAMMAD R.Image forgery detection using image similarity[J].Multimedia Tools and Applications, 2020, 79(39):28643-28659. [19] JINDAL N.Copy move and splicing forgery detection using deep convolution neural network, and semantic segmentation[J].Multimedia Tools and Applications, 2020, 80(4):1-29. [20] CHEN L C, ZHU Y, PAPANDREOU G, et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[EB/OL].[2020-10-10].http://export.arxiv.org/abs/1802.02611. [21] WOO S, PARK J, LEE J Y, et al.CBAM:convolutional block attention module[EB/OL].[2020-10-10].https://www.researchgate.net/publication/326459473_CBAM_Convolutional_Block_Attention_Module. [22] HE K, ZHANG X, REN S, et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer VIsion and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [23] CHEN L C, PAPANDREOU G, KOKKINOS I, et al.Semantic image segmentation with deep convolutional nets and fully connected CRFs[EB/OL].[2020-10-10].https://www.researchgate.net/publication/269932975_Semantic_Image_Segmentation_with_Deep_Convolutional_Nets_and_Fully_Connected_CRFs. [24] CHEN L C, PAPANDREOU G, KOKKINOS I, et al.Deeplab:semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4):834-848. [25] DONG J, WANG W.CASIA tampered image detection evaluation (TIDE) database, v1.0 and v2.0CRFs[EB/OL].[2020-10-10].http://forensics.idealtest.org/. [26] EVERINGHAM M, ESLAMI S M A, VAN G L, et al.The pascal visual object classes challenge:a retrospective[J].International journal of computer vision, 2015, 111(1):98-136. [27] HSU Y F, CHANG S F.Detecting image splicing using geometry invariants and camera characteristics consistency[C]//Proceedings of 2006 IEEE International Conference on Multimedia and Expo.Washington D.C., USA:IEEE Press, 2006:549-552. |