1 |
林麒麟. 基于神经网络智能算法的电力系统短期负荷预测研究[D]. 兰州: 兰州理工大学, 2017.
|
|
LIN Q L. Research on short-term load forecasting of power system based on neural network intelligent algorithm[D]. Lanzhou: Lanzhou University of Technology, 2017. (in Chinese)
|
2 |
张振中, 郭傅傲, 刘大明, 等. 基于最大互信息系数和小波分解的多模型集成短期负荷预测. 计算机应用与软件, 2021, 38 (5): 82- 87.
|
|
ZHANG Z Z , GUO F A , LIU D M , et al. Multi-model integrated short-term load prediction based on maximum mutual information coefficient and wavelet decomposition. Computer Applications and Software, 2021, 38 (5): 82- 87.
|
3 |
赵一鸣, 吉月辉, 刘俊杰, 等. 基于EMD-IPSO-LSTM模型的短期电力负荷预测. 国外电子测量技术, 2023, 42 (1): 132- 137.
|
|
ZHAO Y M , JI Y H , LIU J J , et al. Short term power load forecasting based on EMD-IPSO-LSTM model. Foreign Electronic Measurement Technology, 2023, 42 (1): 132- 137.
|
4 |
吴铁洲, 邹智, 姜奔, 等. 基于TLBGA-GRU神经网络的短期负荷预测. 计算机工程, 2022, 48 (11): 69- 76.
doi: 10.19678/j.issn.1000-3428.0063153
|
|
WU T Z , ZOU Z , JIANG B , et al. Short-term load forecasting based on TLBGA-GRU neural network. Computer Engineering, 2022, 48 (11): 69- 76.
doi: 10.19678/j.issn.1000-3428.0063153
|
5 |
朱子意, 孙晓燕, 柳先彪, 等. 基于相似用电单元及图卷积神经网络的电力负荷预测. 电力科学与工程, 2023, 39 (7): 9- 23.
|
|
ZHU Z Y , SUN X Y , LIU X B , et al. Power load forecasting based on similar power units and graph convolution neural network. Electric Power Science and Engineering, 2023, 39 (7): 9- 23.
|
6 |
SHARMA S , MAJUMDAR A , ELVIRA V , et al. Blind Kalman filtering for short-term load forecasting. IEEE Transactions on Power Systems, 2020, 35 (6): 4916- 4919.
doi: 10.1109/TPWRS.2020.3018623
|
7 |
CASTÁN-LASCORZ M A , JIMÉNEZ-HERRERA P , TRONCOSO A , et al. A new hybrid method for predicting univariate and multivariate time series based on pattern forecasting. Information Sciences, 2022, 586, 611- 627.
doi: 10.1016/j.ins.2021.12.001
|
8 |
DUDEK G , PELKA P , SMYL S . A hybrid residual dilated LSTM and exponential smoothing model for midterm electric load forecasting. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33 (7): 2879- 2891.
doi: 10.1109/TNNLS.2020.3046629
|
9 |
NTI I K , TEIMEH M , NYARKO-BOATENG O , et al. Electricity load forecasting: a systematic review. Journal of Electrical Systems and Information Technology, 2020, 7 (1): 13.
doi: 10.1186/s43067-020-00021-8
|
10 |
李国栋, 周扬, 李凯. 基于SARIMAX-XGBoost模型的区域能耗预测. 电力信息与通信技术, 2022, 20 (3): 26- 33.
|
|
LI G D , ZHOU Y , LI K . Regional energy consumption prediction based on SARIMAX-XGBoost model. Electric Power Information and Communication Technology, 2022, 20 (3): 26- 33.
|
11 |
KE G L. Lightgbm: a highly efficient gradient boosting decision tree[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2017: 317-326.
|
12 |
KWON B S , PARK R J , SONG K B . Short-term load forecasting based on deep neural networks using LSTM layer. Journal of Electrical Engineering & Technology, 2020, 15 (4): 1501- 1509.
|
13 |
IJAZ K , HUSSAIN Z , AHMAD J , et al. A novel temporal feature selection based LSTM model for electrical short-term load forecasting. IEEE Access, 2022, 10, 82596- 82613.
|
14 |
WU L Z , KONG C , HAO X H , et al. A short-term load forecasting method based on GRU-CNN hybrid neural network model. Mathematical Problems in Engineering, 2020, 2020, 1428104.
|
15 |
CHEPLYGINA V , DE BRUIJNE M , PLUIM J P W . Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis. Medical Image Analysis, 2019, 54, 280- 296.
|
16 |
WU F , JING X Y , WEI P F , et al. Semi-supervised multi-view graph convolutional networks with application to webpage classification. Information Sciences, 2022, 591, 142- 154.
|
17 |
|
18 |
DEFFERRARD M, BRESSON X, VANDERGHEYNST P, et al. Convolutional neural networks on graphs with fast localized spectral filtering[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2016: 3844-3852.
|
19 |
LIU X Y , TANG T , DING N . Social network sentiment classification method combined Chinese text syntax with graph convolutional neural network. Egyptian Informatics Journal, 2022, 23 (1): 1- 12.
|
20 |
YAO L, MAO C S, LUO Y, et al. Graph convolutional networks for text classification[C]//Proceedings of the 31rd AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence. New York, USA: ACM Press, 2019: 7370-7377.
|
21 |
CAO D F, WANG Y J, DUAN J Y, et al. Spectral temporal graph neural network for multivariate time-series forecasting[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2020: 17766-17778.
|
22 |
卢武, 郑人杰, 赵文彬, 等. 基于EMD-GRU的短期电力负荷预测方法. 电气传动, 2022, 52 (21): 74- 80.
|
|
LU W , ZHENG R J , ZHAO W B , et al. Short-term power load forecasting method based on EMD-GRU. Electric Drive, 2022, 52 (21): 74- 80.
|
23 |
张月宇, 李德成, 方大俊, 等. 基于EEMD-LSTM模型的集中供热系统热负荷预测方法研究. 能源工程, 2022, 42 (1): 1- 6.
|
|
ZHANG Y Y , LI D C , FANG D J , et al. Study on heat load forecasting method of central heating system based on EEMD-LSTM model. Energy Engineering, 2022, 42 (1): 1- 6.
|
24 |
TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al. A complete ensemble empirical mode decomposition with adaptive noise[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA: IEEE Press, 2011: 4144-4147.
|
25 |
CHENG Y , WANG Z W , CHEN B Y , et al. An improved complementary ensemble empirical mode decomposition with adaptive noise and its application to rolling element bearing fault diagnosis. ISA Transactions, 2019, 91, 218- 234.
|
26 |
|
27 |
WANG Q L, WU B G, ZHU P F, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 11534-11542.
|
28 |
ZHANG R J , SUN F , SONG Z W , et al. Short-term traffic flow forecasting model based on GA-TCN. Journal of Advanced Transportation, 2021, 2021, 1338607.
|
29 |
ZHOU H Y , ZHANG S H , PENG J Q , et al. Informer: beyond efficient transformer for long sequence time-series forecasting. Artificial Intelligence, 2021, 35 (12): 11106- 11115.
|
30 |
ZHOU T, MA Z Q, WEN Q S, et al. FEDformer: frequency enhanced decomposed transformer for long-term series forecasting[EB/OL]. [2023-10-20]. https://arxiv.org/abs/2201.12740v3.
|