作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (4): 339-349. doi: 10.19678/j.issn.1000-3428.0068925

• 开发研究与工程应用 • 上一篇    下一篇

基于CEEMDAN和频谱时间图卷积网络的电力负荷预测方法

朱莉1, 夏禹1,*(), 朱春强2,3, 邓凡1   

  1. 1. 西安科技大学计算机科学与技术学院, 陕西 西安 710000
    2. 西安交通大学电信学部计算机科学与技术学院, 陕西 西安 710000
    3. 国网陕西省电力公司, 陕西 西安 710000
  • 收稿日期:2023-11-29 出版日期:2025-04-15 发布日期:2025-04-18
  • 通讯作者: 夏禹
  • 基金资助:
    国家重点研发计划(2019YFB1405002); 陕西省自然科学基础研究项目(2022JM317); 国网陕西电力数字化专项项目(B326PX23001)

Power Load Prediction Method Based on CEEMDAN and Spectral Time Graph Convolutional Networks

ZHU Li1, XIA Yu1,*(), ZHU Chunqiang2,3, DENG Fan1   

  1. 1. School of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710000, Shaanxi, China
    2. School of Computer Science and Technology, Faculty of Telecommunication, Xi'an Jiaotong University, Xi'an 710000, Shaanxi, China
    3. State Grid Shanxi Electric Power Company, Xi'an 710000, Shaanxi, China
  • Received:2023-11-29 Online:2025-04-15 Published:2025-04-18
  • Contact: XIA Yu

摘要:

针对电力负荷数据存在非平稳性且传统预测模型不能精确获取时序负荷数据的空间相关性和时间依赖性, 导致预测精度低的问题, 设计并实现一种基于完全集成经验模式分解的自适应噪声完备性(CEEMDAN)和频谱图卷积网络的电力负荷预测方法。首先使用CEEMDAN将目标负荷序列分解为多个本征模态分量(IMF), 通过计算模糊熵对IMF进行重构; 然后使用频谱时间图卷积网络对重构后分量的空间相关性和时间依赖性进行挖掘, 得到各分量的预测结果; 最后将各分量的预测结果线性相加得到最终预测结果。实验结果表明, 所提方法的平均绝对误差、均方根误差、平均绝对百分比误差3个评价指标分别达到了0.72 KW、0.89 KW、0.92%, 相较于对比模型StemGnn、TCN、LSTM、Informer、FEDformer, 预测精度分别提高了37.9%、17.2%、20.8%、22.5%、12.1%。证明本文所提出的预测方法可以有效降低非平稳性对预测结果的影响, 精确获取时序负荷数据的空间相关性和时间依赖性, 提高预测精度。

关键词: 电力负荷预测, 经验模态分解, 本征模态分量, 图卷积网络, 模糊熵

Abstract:

The traditional forecasting model cannot accurately determine the spatial correlation and temporal dependence of time-series load data, resulting in low forecasting accuracy. To address this issue and the non-stationarity of power load data, a time-series power load forecasting method based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) and a spectrogram convolutional network is designed and implemented in this study. First, the target load sequence is decomposed into multiple Intrinsic Mode Function (IMF) components using CEEMDAN, and the IMF is reconstructed by calculating the fuzzy entropy. Subsequently, the temporal correlation and spatial dependence of the reconstructed components are mined using the spectral time graph convolutional network, and the prediction results for each component are obtained. Finally, these prediction results are summed linearly to obtain the final prediction results. The experimental results show that the proposed method achieves a Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE) of 0.72 KW, 0.89 KW, and 0.92%, respectively. The prediction accuracy of the proposed method is 37.9%, 17.2%, 20.8%, 22.5%, and 12.1% greater than that of StemGnn, TCN, LSTM, Informer, and FEDformer, respectively. The results demonstrate that the proposed prediction method can effectively reduce the influence of non-stationarity on the prediction results and accurately obtain the spatial correlation and temporal dependence of the time-ordered load data, leading to improved prediction accuracy.

Key words: power load prediction, Empirical Mode Decomposition(EMD), Intrinsic Mode Function(IMF), Graph Convolutional Network(GCN), fuzzy entropy