1 |
CAMPBELL N D F, VOGIATZIS G, HERNANDEZ C, et al. Using multiple hypotheses to improve depth-maps for multi-view stereo[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2008: 766-779.
|
2 |
FURUKAWA Y, PONCE J. Accurate, dense, and robust multiview stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 32 (8): 1362- 1376.
doi: 10.1109/TPAMI.2009.161
|
3 |
GALLIANI S, LASINGER K, SCHINDLER K. Massively parallel multiview stereopsis by surface normal diffusion[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2015: 873-881.
|
4 |
SCHONBERGER J L, FRAHM J M. Structure-from-motion revisited[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 4104-4113.
|
5 |
GU X D, FAN Z W, ZHU S Y, et al. Cascade cost volume for high-resolution multi-view stereo and stereo matching[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 2495-2504.
|
6 |
YAO Y, LUO Z X, LI S W, et al. MVSNet: depth inference for unstructured multi-view stereo[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 785-801.
|
7 |
WEI Z Z, ZHU Q T, MIN C, et al. AA-RMVSNet: adaptive aggregation recurrent multi-view stereo network[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 6187-6196.
|
8 |
YAO Y, LUO Z X, LI S W, et al. Recurrent MVSNet for high-resolution multi-view stereo depth inference[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 8626-8634.
|
9 |
尹晨阳, 职恒辉, 李慧斌. 基于深度学习的双目立体匹配方法综述. 计算机工程, 2022, 48 (10): 1- 12.
URL
|
|
YIN C Y, ZHI H H, LI H B. Survey of binocular stereo-matching methods based on deep learning. Computer Engineering, 2022, 48 (10): 1- 12.
URL
|
10 |
刘会杰, 柏正尧, 程威, 等. 融合注意力机制和多层U-Net的多视图立体重建. 中国图象图形学报, 2022, 27 (2): 475- 485.
|
|
LIU H J, BAI Z Y, CHENG W, et al. Fusion attention mechanism and multilayer U-Net for multiview stereo. Journal of Image and Graphics, 2022, 27 (2): 475- 485.
|
11 |
朱秋明, 倪浩然, 华博宇, 等. 无人机毫米波信道测量与建模研究综述. 移动通信, 2022, 46 (12): 2- 11.
URL
|
|
ZHU Q M, NI H R, HUA B Y, et al. A survey of UAV millimeter-wave channel measurement and modeling. Mobile Communications, 2022, 46 (12): 2- 11.
URL
|
12 |
张在琛, 江浩. 智能超表面使能无人机高能效通信信道建模与传输机理分析. 电子学报, 2023, 51 (10): 2623- 2634.
doi: 10.12263/DZXB.20221352
|
|
ZHANG Z C, JIANG H. Channel modeling and characteristics analysis for high energy-efficient RIS-assisted UAV communications. Acta Electonica Sinica, 2023, 51 (10): 2623- 2634.
doi: 10.12263/DZXB.20221352
|
13 |
ZBONTAR J, LECUN Y. Computing the stereo matching cost with a convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 1592-1599.
|
14 |
KENDALL A, MARTIROSYAN H, DASGUPTA S, et al. End-to-end learning of geometry and context for deep stereo regression[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 66-75.
|
15 |
JI M Q, GALL J, ZHENG H T, et al. SurfaceNet: an end-to-end 3D neural network for multiview stereopsis[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2307-2315.
|
16 |
KAR A, HÄNE C, MALIK J. Learning a multi-view stereo machine[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 30.
|
17 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 5998-6008.
|
18 |
DING Y K, YUAN W T, ZHU Q T, et al. TransMVSNet: global context-aware multi-view stereo network with transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 8575-8584.
|
19 |
LIAO J, DING Y, SHAVIT Y, et al. Wt-MVSNet: window-based transformers for multi-view stereo[C]//Proceedings of Advances in Neural Information Processing Systems. New York, USA: ACM Press, 2022: 8564-8576.
|
20 |
SARLIN P E, DETONE D, MALISIEWICZ T, et al. SuperGlue: learning feature matching with graph neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 4938-4947.
|
21 |
SUN J, SHEN Z, WANG Y, et al. LoFTR: detector-free local feature matching with transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 8922-8931.
|
22 |
WANG Q, ZHANG J M, YANG K L, et al. MatchFormer: interleaving attention in Transformers for feature matching[EB/OL]. [2023-11-01]. https://arxiv.org/abs/2203.09645.
|
23 |
WANG X F, ZHU Z, HUANG G, et al. MVSTER: epipolar transformer for efficient multi-view stereo[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2022: 573-591.
|
24 |
YANG Z P, REN Z L, SHAN Q, et al. MVS2D: efficient multi-view stereo via attention-driven 2D convolutions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 8574-8584.
|
25 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 2117-2125.
|
26 |
AANAES H, JENSEN R R, VOGIATZIS G, et al. Large-scale data for multiple-view stereopsis. International Journal of Computer Vision, 2016, 120 (6): 153- 168.
|
27 |
KNAPITSCH A, PARK J, ZHOU Q Y, et al. Tanks and temples: benchmarking large-scale scene reconstruction. ACM Transactions on Graphics, 2017, 36 (4): 1- 13.
doi: 10.1145/3072959.3073599
|
28 |
YAO, Y, LUO Z X, LI S W, et al. BlendedMVS: a large-scale dataset for generalized multi-view stereo networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 1790-1799.
|
29 |
KATHAROPOULOS A. VYAS A, PAPPAS N, et al. Transformers are RNNs: fast autoregressive Transformers with linear attention[EB/OL]. [2023-11-01]. https://arxiv.org/abs/2006.16236v3.
|
30 |
|
31 |
MA X J, GONG Y, WANG Q R, et al. EPP-MVSNet: epipolar-assembling based depth prediction for multi-view stereo[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 5732-5740.
|
32 |
WANG F J H, GALLIANI S, VOGEL C, et al. PatchmatchNet: learned multi-view patchmatch stereo[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 14194-14203.
|
33 |
XI J F, SHI Y H, WANG Y J, et al. RayMVSNet: learning ray-based 1D implicit fields for accurate multi-view stereo[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 8595-8605.
|
34 |
WANG S, LI B, DAI Y. Efficient multi-view stereo by iterative dynamic cost volume[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 8655-8664.
|
35 |
PENG R, WANG R J, WANG Z Y, et al. Rethinking depth estimation for multi-view stereo: a unified representation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 8645-8654.
|
36 |
ZHANG Z, HU Y, GAO H, et al. Bi-ClueMVSNet: learning bidirectional occlusion clues for multi-view stereo[C]//Proceedings of International Joint Conference on Neural Networks (IJCNN). Washington D. C., USA: IEEE Press, 2023: 1-8.
|
37 |
YAN, Q, WANG, Q, ZHAO, K, et al. Rethinking disparity: a depth range free multi-view stereo based on disparity[C]//Proceedings of the AAAI Conference on Artificial Intelligence. [S. l.]: AAAI Press, 2023: 3091-3099.
|
38 |
XU G W, WANG X Q, DING X H, et al. Iterative geometry encoding volume for stereo matching[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 21919-21928.
|
39 |
MI Z, DI C, XU D. Generalized binary search network for highly-efficient multiview stereo[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 12991-13000.
|