| 1 |
ZHAO Z G , LUO X , CHEN M J , et al. A survey of knowledge graph construction using machine learning. Computer Modeling in Engineering & Sciences, 2024, 139 (1): 225- 257.
|
| 2 |
郑庆华, 董博, 钱步月, 等. 智慧教育研究现状与发展趋势. 计算机研究与发展, 2019, 56 (1): 209- 224.
|
|
ZHENG Q H , DONG B , QIAN B Y , et al. The state of the art and future tendency of smart education. Journal of Computer Research and Development, 2019, 56 (1): 209- 224.
|
| 3 |
王彩云, 郑增亮, 蔡晓琼, 等. 知识图谱在医学领域的应用综述. 生物医学工程学杂志, 2023, 40 (5): 1040- 1044.
|
|
WANG C Y , ZHENG Z L , CAI X Q , et al. Overview of the application of knowledge graphs in the medical field. Journal of Biomedical Engineering, 2023, 40 (5): 1040- 1044.
|
| 4 |
蒋川宇, 韩翔宇, 杨文蕊, 等. 医学知识图谱研究与应用综述. 计算机科学, 2023, 50 (3): 83- 93.
|
|
JIANG C Y , HAN X Y , YANG W R , et al. Survey of medical knowledge graph research and application. Computer Science, 2023, 50 (3): 83- 93.
|
| 5 |
穆维松, 刘天琪, 苗子溦, 等. 知识图谱技术及其在农业领域应用研究进展. 农业工程学报, 2023, 39 (16): 1- 12.
|
|
MU W S , LIU T Q , MIAO Z W , et al. Research progress on knowledge graph technology and its application in agriculture. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39 (16): 1- 12.
|
| 6 |
唐闻涛, 胡泽林. 农业知识图谱研究综述. 计算机工程与应用, 2024, 60 (2): 63- 76.
|
|
TANG W T , HU Z L . Survey of agricultural knowledge graph. Computer Engineering and Applications, 2024, 60 (2): 63- 76.
|
| 7 |
陈烨, 周刚, 卢记仓. 多模态知识图谱构建与应用研究综述. 计算机应用研究, 2021, 38 (12): 3535- 3543.
|
|
CHEN Y , ZHOU G , LU J C . Survey on construction and application research for multi-modal knowledge graphs. Application Research of Computers, 2021, 38 (12): 3535- 3543.
|
| 8 |
张吉祥, 张祥森, 武长旭, 等. 知识图谱构建技术综述. 计算机工程, 2022, 48 (3): 23- 37.
doi: 10.19678/j.issn.1000-3428.0061803
|
|
ZHANG J X , ZHANG X S , WU C X , et al. Survey of knowledge graph construction techniques. Computer Engineering, 2022, 48 (3): 23- 37.
doi: 10.19678/j.issn.1000-3428.0061803
|
| 9 |
张西硕, 柳林, 王海龙, 等. 知识图谱中实体关系抽取方法研究. 计算机科学与探索, 2024, 18 (3): 574- 596.
|
|
ZHANG X S , LIU L , WANG H L , et al. Survey of entity relationship extraction methods in knowledge graphs. Journal of Frontiers of Computer Science and Technology, 2024, 18 (3): 574- 596.
|
| 10 |
陈华钧. 浅谈大模型时代的知识图谱技术栈. 中国计算机学会通讯, 2023, 19 (9): 46- 51.
|
|
CHEN H J . On technology stack's knowledge map in the age of big model. Communication of the CCF, 2023, 19 (9): 46- 51.
|
| 11 |
PAN J Z, RAZNIEWSKI S, KALO J C, et al. Large language models and knowledge graphs: opportunities and challenges[EB/OL]. [2024-02-11]. https://arxiv.org/abs/2308.06374v1.
|
| 12 |
王鑫, 陈子睿, 王昊奋. 知识图谱与大语言模型协同模式探究. 中国计算机学会通讯, 2023, 19 (11): 10- 17.
|
|
WANG X , CHEN Z R , WANG H F . Exploration of collaborative patterns between knowledge graph and large language model. Communications of the CCF, 2023, 19 (11): 10- 17.
|
| 13 |
PAN S R , LUO L H , WANG Y F , et al. Unifying large language models and knowledge graphs: a roadmap. IEEE Transactions on Knowledge and Data Engineering, 2024, 36 (7): 3580- 3599.
doi: 10.1109/TKDE.2024.3352100
|
| 14 |
|
| 15 |
舒文韬, 李睿潇, 孙天祥, 等. 大型语言模型: 原理、实现与发展. 计算机研究与发展, 2024, 61 (2): 351- 361.
|
|
SHU W T , LI R X , SUN T X , et al. Large language models: principles, implementation, and progress. Journal of Computer Research and Development, 2024, 61 (2): 351- 361.
|
| 16 |
李光明. 初中化学学科知识图谱的构建与可视化查询系统的实现[D]. 上海: 上海师范大学, 2020.
|
|
LI G M. Construction of knowledge map of junior middle school chemistry and realization of visual query system[D]. Shanghai: Shanghai Normal University, 2020. (in Chinese)
|
| 17 |
田玲, 张谨川, 张晋豪, 等. 知识图谱综述——表示、构建、推理与知识超图理论. 计算机应用, 2021, 41 (8): 2161- 2186.
|
|
TIAN L , ZHANG J C , ZHANG J H , et al. Knowledge graph survey: representation, construction, reasoning and knowledge hypergraph theory. Journal of Computer Applications, 2021, 41 (8): 2161- 2186.
|
| 18 |
李源, 马新宇, 杨国利, 等. 面向知识图谱和大语言模型的因果关系推断综述. 计算机科学与探索, 2023, 17 (10): 2358- 2376.
|
|
LI Y , MA X Y , YANG G L , et al. Survey of causal inference for knowledge graphs and large language models. Journal of Frontiers of Computer Science and Technology, 2023, 17 (10): 2358- 2376.
|
| 19 |
YAN L X , SHA L L , ZHAO L X , et al. Practical and ethical challenges of large language models in education: a systematic scoping review. British Journal of Educational Technology, 2024, 55 (1): 90- 112.
doi: 10.1111/bjet.13370
|
| 20 |
WANG J Q, CHANG Y Y, LI Z, et al. TechGPT-2.0: a large language model project to solve the task of knowledge graph construction[EB/OL]. [2024-02-11]. https://arxiv.org/abs/2401.04507v1.
|
| 21 |
SYED M H , HUY T Q B , CHUNG S T . Context-aware explainable recommendation based on domain knowledge graph. Big Data and Cognitive Computing, 2022, 6 (1): 11.
doi: 10.3390/bdcc6010011
|
| 22 |
ABU-SALIH B , ALOTAIBI S . A systematic literature review of knowledge graph construction and application in education. Heliyon, 2024, 10 (3): 25383.
doi: 10.1016/j.heliyon.2024.e25383
|
| 23 |
杨玉基, 许斌, 胡家威, 等. 一种准确而高效的领域知识图谱构建方法. 软件学报, 2018, 29 (10): 2931- 2947.
|
|
YANG Y J , XU B , HU J W , et al. Accurate and efficient method for constructing domain knowledge graph. Journal of Software, 2018, 29 (10): 2931- 2947.
|
| 24 |
周东岱, 董晓晓, 顾恒年. 教育领域知识图谱研究新趋向: 学科教学图谱. 电化教育研究, 2024, 45 (2): 91-97, 120.
|
|
ZHOU D D , DONG X X , GU H N . A new trend of knowledge graph research in education: subject teaching graph. e-Education research, 2024, 45 (2): 91-97, 120.
|
| 25 |
DANG F R , TANG J T , PANG K Y , et al. Constructing an educational knowledge graph with concepts linked to Wikipedia. Journal of Computer Science and Technology, 2021, 36 (5): 1200- 1211.
doi: 10.1007/s11390-020-0328-2
|
| 26 |
SHEN Y L , CHEN Z H , CHENG G , et al. CKGG: a Chinese knowledge graph for high-school geography education and beyond. Berlin, Germany: Springer International Publishing, 2021.
|
| 27 |
|
| 28 |
郑理欣. 面向计算机领域的多模态知识图谱构建方法研究[D]. 石家庄: 河北科技大学, 2022.
|
|
ZHENG L X. Research on the construction method of multimodal knowledge map for computer field[D]. Shijiazhuang: Hebei University of Science and Technology, 2022. (in Chinese)
|
| 29 |
赵宇博, 张丽萍, 闫盛, 等. 个性化学习中学科知识图谱构建与应用综述. 计算机工程与应用, 2023, 59 (10): 1- 21.
|
|
ZHAO Y B , ZHANG L P , YAN S , et al. Construction and application of discipline knowledge graph in personalized learning. Computer Engineering and Applications, 2023, 59 (10): 1- 21.
|
| 30 |
董晓晓, 周东岱, 黄雪娇, 等. 学科核心素养发展导向下教育领域知识图谱模式构建方法研究. 电化教育研究, 2022, 43 (5): 76- 83.
|
|
DONG X X , ZHOU D D , HUANG X J , et al. Research on method of constructing knowledge graph mode in educational field oriented by subject core literacy. e-Education Research, 2022, 43 (5): 76- 83.
|
| 31 |
CHETOUI I, EL BACHARI E, EL ADNANI M. Course recommendation model based on knowledge graph embedding[C]//Proceedings of the 16th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS). Washington D.C., USA: IEEE Press, 2022: 510-514.
|
| 32 |
KUMAR K , MANOCHA S . Constructing knowledge graph from unstructured text. Self, 2015, 3, 4.
|
| 33 |
BALTRUŠAITIS T , AHUJA C , MORENCY L P . Multimodal machine learning: a survey and taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41 (2): 423- 443.
doi: 10.1109/TPAMI.2018.2798607
|
| 34 |
XU N , WANG J Y , TIAN Y , et al. AnANet: association and alignment network for modeling implicit relevance in cross-modal correlation classification. IEEE Transactions on Multimedia, 2022, 25, 7867- 7880.
|
| 35 |
JIANG D, YE M. Cross-modal implicit relation reasoning and aligning for text-to-image person retrieval[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2023: 2787-2797.
|
| 36 |
|
| 37 |
ZHANG X, YUAN J, LI L, et al. Reducing the bias of visual objects in multimodal named entity recognition[C]//Proceedings of the 16th ACM International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2023: 958-966.
|
| 38 |
高国伟, 王亚杰, 李永先. 我国知识元研究综述. 情报科学, 2016, 34 (2): 161- 165.
|
|
GAO G W , WANG Y J , LI Y X . Review of the research of domestic knowledge element. Information Science, 2016, 34 (2): 161- 165.
|
| 39 |
朱晓芸, 陈奇, 杨枨, 等. 决策支持系统中的广义知识元及模型库[C]//1993中国控制与决策学术年会论文集. 沈阳: 东北大学出版社, 1993: 4.
|
|
ZHU X Y, CHEN Q, YANG C, et al. Generalized knowledge elements and model bases in decision support systems[C]//Proceedings of the 1993 China Control and Decision Academic Annual Conference. Shenyang: Northeastern University Press, 1993: 4. (in Chinese)
|
| 40 |
施江勇, 唐晋韬, 王勇军, 等. 基于知识图谱的新兴领域课程教学资源建设. 高等工程教育研究, 2022 (3): 15- 20.
|
|
SHI J Y , TANG J T , WANG Y J , et al. The construction of curriculum resources in emerging fields based on knowledge graph. Research in Higher Education of Engineering, 2022 (3): 15- 20.
|
| 41 |
LI Z J, CHENG L Y, ZHANG C H, et al. Multi-source education knowledge graph construction and fusion for college curricula[C]//Proceedings of the IEEE International Conference on Advanced Learning Technologies (ICALT). Washington D.C., USA: IEEE Press, 2023: 359-363.
|
| 42 |
潘颖, 欧启忠, 肖耿毅. 面向语义的课程知识本体的构建. 电化教育研究, 2007, 28 (2): 19-21, 27.
|
|
PAN Y , OU Q Z , XIAO G Y . Construction of semantic-oriented curriculum knowledge ontology. e-Education Research, 2007, 28 (2): 19-21, 27.
|
| 43 |
邢科云. 课程知识本体的构建与应用研究[D]. 杭州: 杭州师范大学, 2010.
|
|
XING K Y. Research on the construction and application of curriculum knowledge ontology[D]. Hangzhou: Hangzhou Normal University, 2010. (in Chinese)
|
| 44 |
姜强, 赵蔚, 王续迪. 自适应学习系统中用户模型和知识模型本体参考规范的设计. 现代远距离教育, 2011 (1): 61- 65.
|
|
JIANG Q , ZHAO W , WANG X D . Design of user model and knowledge model ontology reference specification in adaptive learning system. Modern Distance Education, 2011 (1): 61- 65.
|
| 45 |
詹川. 基于教育心理学的课程知识本体模型研究. 图书情报工作, 2011, 55 (14): 111- 115.
|
|
ZHAN C . E-learning course ontology model based on educational psychology. Library and Information Service, 2011, 55 (14): 111- 115.
|
| 46 |
黄焕, 元帅, 何婷婷, 等. 面向适应性学习系统的课程知识图谱构建研究——以"Java程序设计基础"课程为例. 现代教育技术, 2019, 29 (12): 89- 95.
|
|
HUANG H , YUAN S , HE T T , et al. Research on the construction of course knowledge graph for adaptive learning system—taking "Java programming foundation" course as an example. Modern Educational Technology, 2019, 29 (12): 89- 95.
|
| 47 |
GAO J, WANG L, XU F. Research on the construction of course knowledge graph of high school information technology[C]//Proceedings of the International Conference on Artificial Intelligence and Education (ICAIE). Washington D.C., USA: IEEE Press, 2020: 211-215.
|
| 48 |
YANG Z J , WANG Y , GAN J H , et al. Design and research of intelligent Question-Answering(Q&A) system based on high school course knowledge graph. Mobile Networks and Applications, 2021, 26 (5): 1884- 1890.
doi: 10.1007/s11036-020-01726-w
|
| 49 |
宋丹, 胡瑛, 方正军, 等. 基于学情数据的智慧教学模式研究与实践. 高等工程教育研究, 2022 (6): 116- 120.
|
|
SONG D , HU Y , FANG Z J , et al. Research and practice of intelligent teaching mode based on learning situation data. Research in Higher Education of Engineering, 2022 (6): 116- 120.
|
| 50 |
QAISER S , ALI R . Text mining: use of TF-IDF to examine the relevance of words to documents. International Journal of Computer Applications, 2018, 181 (1): 25- 29.
doi: 10.5120/ijca2018917395
|
| 51 |
ZHU P , ZHONG W , YAO X M . Auto-construction of course knowledge graph based on course knowledge. International Journal of Performability Engineering, 2019, 15 (8): 2228.
doi: 10.23940/ijpe.19.08.p23.22282236
|
| 52 |
BAI J H, CHE L. Construction and application of database micro-course knowledge graph based on Neo4j[C]//Proceedings of the 2nd International Conference on Computing and Data Science. New York, USA: ACM Press, 2021: 1-5.
|
| 53 |
ZHOU C Z. Academic new media service method based on knowledge graph[C]//Proceedings of the 2nd International Conference on Engineering Management and Information Science. [S. l. ]: EAI Press, 2023: 1-9.
|
| 54 |
THUSHARA M G, MOWNIKA T, MANGAMURU R. A comparative study on different keyword extraction algorithms[C]//Proceedings of the 3rd International Conference on Computing Methodologies and Communication (ICCMC). Washington D.C., USA: IEEE Press, 2019: 969-973.
|
| 55 |
ZHANG M X , LI X M , YUE S B , et al. An empirical study of TextRank for keyword extraction. IEEE Access, 2020, 8, 178849- 178858.
doi: 10.1109/ACCESS.2020.3027567
|
| 56 |
陈曦, 梅广, 张金金, 等. 融合知识图谱和协同过滤的学生成绩预测方法. 计算机应用, 2020, 40 (2): 595- 601.
|
|
CHEN X , MEI G , ZHANG J J , et al. Student grade prediction method based on knowledge graph and collaborative filtering. Journal of Computer Applications, 2020, 40 (2): 595- 601.
|
| 57 |
张水晶, 陈建峡, 吴歆韵. 一种句袋注意力远程监督关系抽取方法. 计算机应用与软件, 2022, 39 (8): 193- 203.
|
|
ZHANG S J , CHEN J X , WU X Y . A novel distant supervision relation extraction approach based on sentence bag attention. Computer Applications and Software, 2022, 39 (8): 193- 203.
|
| 58 |
LI H , GONG R R , ZHONG Z M , et al. Research on personalized learning path planning model based on knowledge network. Neural Computing and Applications, 2023, 35 (12): 8809- 8821.
|
| 59 |
MA X Q, XU T, WANG F S, et al. Research on the construction of curriculum knowledge graph based on GMM[C]//Proceedings of the 3rd International Conference on Computer Information and Big Data Applications. Wuhan, China: VDE Press, 2022: 1-4.
|
| 60 |
CHEN P H, LU Y, ZHENG V W, et al. An automatic knowledge graph construction system for K-12 education[C]//Proceedings of the 5th Annual ACM Conference on Learning at Scale. New York, USA: ACM Press, 2018: 1-4.
|
| 61 |
|
| 62 |
SOCHER R, HUVAL B, MANNING C D, et al. Semantic compositionality through recursive matrix-vector spaces[C]// Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Philadelphia, USA: Association for Computational Linguistics, 2012: 1201-1211.
|
| 63 |
|
| 64 |
CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. [2024-02-11]. https://arxiv.org/abs/1412.3555v1.
|
| 65 |
CHEN P H , LU Y , ZHENG V W , et al. KnowEdu: a system to construct knowledge graph for education. IEEE Access, 2018, 6, 31553- 31563.
doi: 10.1109/ACCESS.2018.2839607
|
| 66 |
ZHOU P, SHI W, TIAN J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsburg, USA: ACL Press, 2016: 207-212.
|
| 67 |
|
| 68 |
LIU S , YANG H , LI J Y , et al. Preliminary study on the knowledge graph construction of Chinese ancient history and culture. Information, 2020, 11 (4): 186.
doi: 10.3390/info11040186
|
| 69 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[EB/OL]. [2024-02-11]. https://arxiv.org/abs/1810.04805v2.
|
| 70 |
|
| 71 |
AIN Q U , CHATTI M A , BAKAR K G C , et al. Automatic construction of educational knowledge graphs: a word embedding-based approach. Information, 2023, 14 (10): 526.
doi: 10.3390/info14100526
|
| 72 |
SU Y, ZHANG Y. Automatic construction of subject knowledge graph based on educational big data[C]//Proceedings of the 3rd International Conference on Big Data and Education. New York, USA: ACM Press, 2020: 30-36.
|
| 73 |
LI N , SHEN Q , SONG R , et al. MEduKG: a deep-learning-based approach for multi-modal educational knowledge graph construction. Information, 2022, 13 (2): 91.
doi: 10.3390/info13020091
|
| 74 |
YANG P R , WANG H J , HUANG Y Z , et al. LMKG: a large-scale and multi-source medical knowledge graph for intelligent medicine applications. Knowledge-Based Systems, 2024, 284, 111323.
doi: 10.1016/j.knosys.2023.111323
|
| 75 |
|
| 76 |
LI J Y, LI H, PAN Z, et al. Prompting ChatGPT in MNER: enhanced multimodal named entity recognition with auxiliary refined knowledge[C]//Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2023. Stroudsburg, USA: ACL Press, 2023: 1-16.
|
| 77 |
寇嘉颖, 赵卫东, 柳先辉. 融合关系传递信息的双图文档级关系抽取方法. 计算机科学, 2023, 50 (12): 229- 235.
|
|
KOU J Y , ZHAO W D , LIU X H . Method of document level relation extraction based on fusion of relational transfer information using double graph. Computer Science, 2023, 50 (12): 229- 235.
|
| 78 |
李冬梅, 张扬, 李东远, 等. 实体关系抽取方法研究综述. 计算机研究与发展, 2020, 57 (7): 1424- 1448.
|
|
LI D M , ZHANG Y , LI D Y , et al. Review of entity relation extraction methods. Journal of Computer Research and Development, 2020, 57 (7): 1424- 1448.
|
| 79 |
ZHANG N Y, XU X, TAO L K, et al. DeepKE: a deep learning based knowledge extraction toolkit for knowledge base population[EB/OL]. [2024-02-11]. https://arxiv.org/abs/2201.03335v6.
|
| 80 |
MANNING C, SURDEANU M, BAUER J, et al. The Stanford CoreNLP natural language processing toolkit[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations. Stroudsburg, USA: ACL Press, 2014: 55-60.
|
| 81 |
ETZIONI O, FADER A, CHRISTENSEN J, et al. Open information extraction: the second generation[C]//Proceedings of the 32nd International Joint Conference on Artificial Intelligence. Washington D.C., USA: IEEE Press, 2011: 3-10.
|
| 82 |
SUCHANEK F M, SOZIO M, WEIKUM G. SOFIE: a self-organizing framework for information extraction[C]//Proceedings of the 18th International Conference on World Wide Web. New York, USA: ACM Press, 2009: 631-640.
|
| 83 |
SCHMITZ M, SODERLAND S, BART R, et al. Open language learning for information extraction[C]//Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Philadelphia, USA: ACL Press, 2012: 523-534.
|
| 84 |
LI G, WANG H, LIU H. Knowledge graph construction for computer networking course group in secondary vocational school based on multi-source heterogeneous data[C]//Proceedings of the 12th International Conference on Information Technology in Medicine and Education (ITME). Washington D.C., USA: IEEE Press, 2022: 99-103.
|
| 85 |
JIANG P, LU S Q, GU Z Y, et al. Construction of guidance graph in blended learning based on knowledge point extraction[C]//Proceedings of the IEEE 6th Information Technology, Networking, Electronic and Automation Control Conference. Washington D.C., USA: IEEE Press, 2023: 1751-1755.
|
| 86 |
QIN Y H , CAO H , XUE L Y . Research and application of knowledge graph in teaching: take the database course as an example. Journal of Physics: Conference Series, 2020, 1607 (1): 012127.
doi: 10.1088/1742-6596/1607/1/012127
|
| 87 |
QIAO L, YIN C T, CHEN H, et al. Automated construction of course knowledge graph based on China MOOC platform[C]//Proceedings of the IEEE International Conference on Engineering, Technology and Education. Washington D.C., USA: IEEE Press, 2019: 1-7.
|
| 88 |
王昊奋, 漆桂林, 陈华钧. 知识图谱: 方法、实践与应用. 北京: 电子工业出版社, 2019.
|
|
WANG H F , QI G L , CHEN H J . Knowledge graph. Beijing: Publishing House of Electronics Industry, 2019.
|
| 89 |
LÜ Z H, YI K X, ZHOU W J, et al. A review of the knowledge extraction technology in knowledge graph[C]//Proceedings of the 41st Chinese Control Conference (CCC). Washington D.C., USA: IEEE Press, 2022: 4211-4218.
|
| 90 |
SONG Z R, WAN L. Research of Chinese relation extraction based on BERT[C]//Proceedings of the IEEE 3rd International Conference on Power, Electronics and Computer Applications (ICPECA). Washington D.C., USA: IEEE Press, 2023: 841-845.
|
| 91 |
XIA X Q, LI X C, CHU H P, et al. Research on knowledge extraction in knowledge graph construction[C]//Proceedings of the 3rd International Conference on Computer Vision and Data Mining (ICCVDM). [S. l. ]: SPIE Press, 2023: 391-401.
|
| 92 |
LI Y, QIU J C, GUI S J, et al. Analytics 2.0 for precision education driven by knowledge map[C]//Proceedings of the IEEE Frontiers in Education Conference (FIE). Washington D.C., USA: IEEE Press, 2022: 1-5.
|
| 93 |
刘森淼. 面向知识图谱的关系抽取算法研究[D]. 南京: 南京理工大学, 2021.
|
|
LIU S M. Research on relation extraction algorithm for knowledge map[D]. Nanjing: Nanjing University of Science and Technology, 2021. (in Chinese)
|
| 94 |
HINTON G E , SALAKHUTDINOV R R . Reducing the dimensionality of data with neural networks. Science, 2006, 313 (5786): 504- 507.
doi: 10.1126/science.1127647
|
| 95 |
SUN Q , ZHANG K , LÜ L S , et al. Joint extraction of entities and overlapping relations by improved graph convolutional networks. Applied Intelligence, 2022, 52 (5): 5212- 5224.
doi: 10.1007/s10489-021-02667-x
|
| 96 |
MINTZ M, BILLS S, SNOW R, et al. Distant supervision for relation extraction without labeled data[C]//Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP. Philadelphia, USA: ACL Press, 2009: 1003-1011.
|
| 97 |
ZENG D J, LIU K, CHEN Y B, et al. Distant supervision for relation extraction via piecewise convolutional neural networks[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL Press, 2015: 1753-1762.
|
| 98 |
LIN Y K, SHEN S Q, LIU Z Y, et al. Neural relation extraction with selective attention over instances[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, USA: ACL Press, 2016: 2124-2133.
|
| 99 |
CHEN Y , CHEN Z Y . Research on the key technology of course ontology construction. Journal of Physics: Conference Series, 2022, 2330 (1): 012012.
doi: 10.1088/1742-6596/2330/1/012012
|
| 100 |
KANNAN A V, FRADKIN D, AKROTIRIANAKIS I, et al. Multimodal knowledge graph for deep learning papers and code[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York, USA: ACM Press, 2020: 3417-3420.
|
| 101 |
刘昀抒, 申彦明, 齐恒, 等. 基于层次结构图的多跳知识图谱问答模型. 计算机工程, 2024, 50 (1): 101- 109.
doi: 10.19678/j.issn.1000-3428.0066637
|
|
LIU Y S , SHEN Y M , QI H , et al. Multi-hop knowledge base question answering model based on hierarchical structure graph. Computer Engineering, 2024, 50 (1): 101- 109.
doi: 10.19678/j.issn.1000-3428.0066637
|
| 102 |
XU G W , JIA G Y , SHI L , et al. Personalized course recommendation system fusing with knowledge graph and collaborative filtering. Computational Intelligence and Neuroscience, 2021 (1): 9590502.
|
| 103 |
ZHANG X M , LIU S , WANG H Y . Personalized learning path recommendation for E-learning based on knowledge graph and graph convolutional network. International Journal of Software Engineering and Knowledge Engineering, 2023, 33 (1): 109- 131.
doi: 10.1142/S0218194022500681
|
| 104 |
吴昊, 徐行健, 孟繁军. 课程资源的融合知识图谱多任务特征推荐算法. 计算机工程与应用, 2021, 57 (21): 132- 139.
|
|
WU H , XU X J , MENG F J . Knowledge graph-assisted multi-task feature-based course recommendation algorithm. Computer Engineering and Applications, 2021, 57 (21): 132- 139.
|
| 105 |
赵玲朗, 范佳荣, 赵一婷, 等. 基于知识图谱的学习者画像模型设计与应用——以"高中物理"课程为例. 现代教育技术, 2021, 31 (2): 95- 101.
|
|
ZHAO L L , FAN J R , ZHAO Y T , et al. The design and application of the learners' portrait model based on knowledge mapping—taking the "high school physics" course as an example. Modern Educational Technology, 2021, 31 (2): 95- 101.
|
| 106 |
DENG L Q, XU X S, REN Y. Analysis and prediction of network connection behavior anomaly based on knowledge graph features[C]//Proceedings of the 3rd International Seminar on Artificial Intelligence, Networking, and Information Technology (AINIT). [S. l. ]: SPIE Press, 2023: 309-316.
|
| 107 |
王春雷, 王肖, 刘凯. 多模态知识图谱表示学习综述. 计算机应用, 2024, 44 (1): 1- 15.
|
|
WANG C L , WANG X , LIU K . Multimodal knowledge graph representation learning: a review. Journal of Computer Applications, 2024, 44 (1): 1- 15.
|
| 108 |
FETTACH Y , GHOGHO M , BENATALLAH B . Knowledge graphs in education and employability: a survey on applications and techniques. IEEE Access, 2022, 10, 80174- 80183.
doi: 10.1109/ACCESS.2022.3194063
|
| 109 |
ZHENG L Q , LONG M L , CHEN B D , et al. Promoting knowledge elaboration, socially shared regulation, and group performance in collaborative learning: an automated assessment and feedback approach based on knowledge graphs. International Journal of Educational Technology in Higher Education, 2023, 20 (1): 46.
doi: 10.1186/s41239-023-00415-4
|
| 110 |
WANG C , XU S S . Construction of the evaluation index system of physical education teaching in colleges and universities based on scientific knowledge graph. Mobile Information Systems, 2024, 20 (1): 1- 13.
|
| 111 |
郑庆华, 刘欢, 龚铁梁, 等. 大数据知识工程发展现状及展望. 中国工程科学, 2023, 25 (2): 208- 220.
|
|
ZHENG Q H , LIU H , GONG T L , et al. Development and prospect of big data knowledge engineering. Strategic Study of CAE, 2023, 25 (2): 208- 220.
|
| 112 |
YU Y Q, LIAO M H, WU J H, et al. TextHawk: exploring efficient fine-grained perception of multimodal large language models[EB/OL]. [2024-02-11]. https://arxiv.org/abs/2404.09204v1.
|
| 113 |
YE Q H, XU H Y, YE J B, et al. mPLUG-Owl2: revolutionizing multi-modal large language model with modality collaboration[EB/OL]. [2024-02-11]. https://arxiv.org/abs/2311.04257v2.
|
| 114 |
胡斌皓, 张建朋, 陈鸿昶. 基于生成式对抗网络和正类无标签学习的知识图谱补全算法. 计算机科学, 2024, 51 (1): 310- 315.
|
|
HU B H , ZHANG J P , CHEN H C . Knowledge graph completion algorithm based on generative adversarial network and positive and unlabeled learning. Computer Science, 2024, 51 (1): 310- 315.
|
| 115 |
马坤, 安敬民, 李冠宇. 动态聚合实体和关系上下文的知识图谱补全. 计算机工程, 2023, 49 (8): 77-84, 95.
doi: 10.19678/j.issn.1000-3428.0065410
|
|
MA K , AN J M , LI G Y . Knowledge graph completion with dynamically aggregating context of entity and relation. Computer Engineering, 2023, 49 (8): 77-84, 95.
doi: 10.19678/j.issn.1000-3428.0065410
|
| 116 |
LIU Y B , WEN F , ZONG T , et al. Research on joint extraction method of entity and relation triples based on hierarchical cascade labeling. IEEE Access, 2022, 11, 9789- 9798.
|
| 117 |
|
| 118 |
|
| 119 |
|