作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2026, Vol. 52 ›› Issue (1): 196-205. doi: 10.19678/j.issn.1000-3428.0069935

• 计算机视觉与图形图像处理 • 上一篇    下一篇

集成电路反向工程中HE-UNet的IC图像分割算法研究

程弘楠1,2, 张晨光1,2,*()   

  1. 1. 海南大学数学与统计学院, 海南 海口 570228
    2. 海南省工程建模与统计计算重点实验室, 海南 海口 570228
  • 收稿日期:2024-05-30 修回日期:2024-08-13 出版日期:2026-01-15 发布日期:2024-10-22
  • 通讯作者: 张晨光
  • 作者简介:

    程弘楠, 男, 硕士研究生, 主研方向为深度学习、图像处理

    张晨光(通信作者), 副教授、博士、博士生导师

  • 基金资助:
    海南省自然科学基金(624MS039); 国家自然科学基金(62166016)

Research on IC Image Segmentation Algorithm of HE-UNet in Integrated Circuit Reverse Engineering

CHENG Hongnan1,2, ZHANG Chenguang1,2,*()   

  1. 1. School of Mathematics and Statistics, Hainan University, Haikou 570228, Hainan, China
    2. Key Laboratory of Engineering Modeling and Statistical Computation of Hainan, Haikou 570228, Hainan, China
  • Received:2024-05-30 Revised:2024-08-13 Online:2026-01-15 Published:2024-10-22
  • Contact: ZHANG Chenguang

摘要:

芯片产业是国家安全和经济发展的重要基础, 而集成电路(IC)反向工程(RE)作为分析芯片内部性能的手段, 是芯片产业链中的重要环节。RE包括从扫描电子显微镜(SEM)逐层采集芯片图像、识别器件、提取栅极网表、推断其功能等步骤, 而将电气元件和金属线从IC图像背景中分割出来是识别器件等步骤的前提。然而, 传统图像分割方法因为缺乏专家经验的学习, 不能适应IC图像复杂多变的电路情况。为此, 提出一种HE-UNet方法, 用于提取IC图像中的金属线与过孔。HE-UNet包含3个步骤: 首先, 利用U-M2网络提取芯片图像的含噪特征; 其次, 利用霍夫圆检测算法去除过孔周围的噪声; 最后, 利用边缘检测池化去除远离过孔的噪声。在尺寸为1 024×1 024像素的IC图像上进行实验, 结果表明, HE-UNet可以有效完成金属线和过孔的分割, 其平均交并比(mIoU)为98.24%, 平均像素准确率(MPA)为99.11%, 均优于对比方法。

关键词: 集成电路, 反向工程, 图像分割, 霍夫圆检测, HE-UNet

Abstract:

The chip industry is critical for national security and economic development, and Integrated Circuit (IC) Reverse Engineering (RE), as a means of analyzing the internal performance of chips, is an important link in the chip industry chain. RE includes steps such as layer-by-layer acquisition of chip images using Scanning Electron Microscopy (SEM), identification of devices, extraction of gate netlists, and inference of their functions. Segmentation of electrical components and metal lines from the IC image background is a prerequisite for identifying devices and other steps. However, traditional image segmentation methods cannot adapt to the complex and ever-changing circuit conditions of IC images owing to the lack of expert experience in learning. To this end, the HE-UNet method is proposed for extracting metal lines and vias from IC images. HE-UNet consists of three steps: first, the U-M2 network is used to extract noisy features from chip images; second, the Hough circle detection algorithm is used to remove noise around the via holes; and third, edge detection pooling is used to remove noise from the via holes. Experiments conducted on IC images with a size of 1 024×1 024 pixels reveal that HE-UNet can effectively segment metal lines and vias, with a mean Intersection over Union (mIoU) of 98.24% and Mean Pixel Accuracy (MPA) of 99.11%, both of which are superior to those achieved by other methods.

Key words: Integrated Circuit (IC), Reverse Engineering (RE), image segmentation, Hough circle detection, HE-UNet