| 1 |
QUADIR S E , CHEN J L , FORTE D , et al. A survey on chip to system reverse engineering. ACM Journal on Emerging Technologies in Computing Systems, 2017, 13 (1): 1- 34.
|
| 2 |
WILSON R, FORTE D, ASADIZANJANI N, et al. LASRE: a novel approach to large area accelerated segmentation for reverse engineering on SEM images[C]//Proceedings of the International Symposium for Testing and Failure Analysis. Washington D.C., USA: IEEE Press, 2020: 180-187.
|
| 3 |
WILSON R, LU H W, ZHU M D, et al. REFICS: a step towards linking vision with hardware assurance[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Washington D.C., USA: IEEE Press, 2022: 3461-3470.
|
| 4 |
COURBON F . Practical partial hardware reverse engineering analysis: for local fault injection and authenticity verification. Journal of Hardware and Systems Security, 2020, 4 (1): 1- 10.
doi: 10.1007/s41635-019-00068-8
|
| 5 |
PRINCIPE E L, ASADIZANJANI N, FORTE D, et al. Steps toward automated deprocessing of integrated circuits[C]//Proceedings of the International Symposium for Testing and Failure Analysis. Washington D.C., USA: IEEE Press, 2017: 285-298.
|
| 6 |
SUBRAMANYAN P, TSISKARIDZE N, PASRICHA K, et al. Reverse engineering digital circuits using functional analysis[C]//Proceedings of the Design, Automation Test in Europe Conference Exhibition (DATE). Washington D.C., USA: IEEE Press, 2013: 1277-1280.
|
| 7 |
RAJENDRAN S , REGEENA M L . A novel algorithm for hardware Trojan detection through reverse engineering. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41 (4): 1154- 1166.
doi: 10.1109/TCAD.2021.3073855
|
| 8 |
GOWTHAM M, HARSHA K S, NIKHIL J, et al. Hardware Trojan detection using supervised machine learning[C]//Proceedings of the 6th International Conference on Communication and Electronics Systems (ICCES). Washington D.C., USA: IEEE Press, 2021: 1451-1456.
|
| 9 |
NASR A A , ABDULMAGEED M Z . An efficient reverse engineering hardware Trojan detector using histogram of oriented gradients. Journal of Electronic Testing, 2017, 33 (1): 93- 105.
doi: 10.1007/s10836-016-5631-z
|
| 10 |
FYRBIAK M, STRAUSS S, KISON C, et al. Hardware reverse engineering: overview and open challenges[C]//Proceedings of the 2nd IEEE International Verification and Security Workshop (IVSW). Washington D.C., USA: IEEE Press, 2017: 88-94.
|
| 11 |
SALMANI H , TEHRANIPOOR M M . Vulnerability analysis of a circuit layout to hardware Trojan insertion. IEEE Transactions on Information Forensics and Security, 2016, 11 (6): 1214- 1225.
doi: 10.1109/TIFS.2016.2520910
|
| 12 |
|
| 13 |
MACHADO T B, UKWATTA E, SPENCE M, et al. Segmentation of integrated circuit layouts from scan electron microscopy images[C]//Proceedings of the IEEE Canadian Conference on Electrical Computer Engineering (CCECE). Washington D.C., USA: IEEE Press, 2018: 1-4.
|
| 14 |
DOUDKIN A, INYUTIN A, VATKIN M. Objects identification on the color layout images of the integrated circuit layers[C]//Proceedings of the IEEE Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications. Washington D.C., USA: IEEE Press, 2005: 610-614.
|
| 15 |
LAGUNOVSKY D, ABLAMEYKO S, KUTAS M. Recognition of integrated circuit images in reverse engineering[C]//Proceedings of the 14th International Conference on Pattern Recognition. Washington D.C., USA: IEEE Press, 1998: 1640-1642.
|
| 16 |
NAKAGAKI R , TAKAGI Y , NAKAMAE K . Automatic recognition of circuit patterns on semiconductor wafers from multiple scanning electron microscope images. Measurement Science and Technology, 2010, 21 (8): 085501.
doi: 10.1088/0957-0233/21/8/085501
|
| 17 |
QUIJADA R , DURA R , PALLARES J , et al. Large-area automated layout extraction methodology for full-IC reverse engineering. Journal of Hardware and Systems Security, 2018, 2 (4): 322- 332.
doi: 10.1007/s41635-018-0051-4
|
| 18 |
CHENG D R, SHI Y Q, LIN T, et al. Global template projection and matching method for training-free analysis of delayered IC images[C]//Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS). Washington D.C., USA: IEEE Press, 2019: 1-5.
|
| 19 |
LIPPMANN B, WERNER M, UNVERRICHT N, et al. Integrated flow for reverse engineering of nanoscale technologies[C]//Proceedings of the 24th Asia and South Pacific Design Automation Conference. Washington D.C., USA: IEEE Press, 2019: 82-89.
|
| 20 |
CHENG D R , SHI Y Q , LIN T , et al. Hybrid ${K}$-means clustering and support vector machine method for via and metal line detections in delayered IC images. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2018, 65 (12): 1849- 1853.
doi: 10.1109/TCSII.2018.2827044
|
| 21 |
陈良臣, 傅德印. 面向小样本数据的机器学习方法研究综述. 计算机工程, 2022, 48 (11): 1- 13.
doi: 10.19678/j.issn.1000-3428.0065347
|
|
CHEN L C , FU D Y . Survey on machine learning methods for small sample data. Computer Engineering, 2022, 48 (11): 1- 13.
doi: 10.19678/j.issn.1000-3428.0065347
|
| 22 |
MAZALAN S M, MAHMOOD N H, RAZAK M A A. Automated red blood cells counting in peripheral blood smear image using circular Hough transform[C]//Proceedings of the 1st International Conference on Artificial Intelligence, Modelling and Simulation. Washington D.C., USA: IEEE Press, 2013: 320-324.
|
| 23 |
王欣, 王美丽, 边党伟. 融合MobileNetV2和注意力机制的轻量级人像分割算法. 计算机工程与应用, 2022, 58 (7): 220- 228.
|
|
WANG X , WANG M L , BIAN D W . Algorithm for portrait segmentation combined with MobileNetV2 and attention mechanism. Computer Engineering and Applications, 2022, 58 (7): 220- 228.
|
| 24 |
|
| 25 |
张廓, 陈章进, 乔栋, 等. 基于感受野和特征增强的遥感图像实时检测. 激光与光电子学进展, 2023, 60 (2): 331- 340.
|
|
ZHANG K , CHEN Z J , QIAO D , et al. Real-time image detection via remote sensing based on receptive field and feature enhancement. Laser Optoelectronics Progress, 2023, 60 (2): 331- 340.
|
| 26 |
SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 4510-4520.
|
| 27 |
安凯迪. 基于轻量级网络的图像分割算法研究及应用[D]. 阜阳: 阜阳师范大学, 2023.
|
|
AN K D. Research and application of image segmentation algorithm based on lightweight network[D]. Fuyang: Fuyang Normal University, 2023. (in Chinese)
|
| 28 |
GARCIA-GARCIA A, ORTS-ESCOLANO S, OPREA S, et al. A review on deep learning techniques applied to semantic segmentation[EB/OL]. [2024-02-05]. https://arxiv.org/abs/1704.06857.
|
| 29 |
UDUPA J K , LEBLANC V R , ZHUGE Y , et al. A framework for evaluating image segmentation algorithms. Computerized Medical Imaging and Graphics, 2006, 30 (2): 75- 87.
doi: 10.1016/j.compmedimag.2005.12.001
|
| 30 |
高煜宝, 文志诚. 基于注意力机制的双路解码器图像去噪方法. 计算机工程, 2024, 50 (9): 324- 332.
doi: 10.19678/j.issn.1000-3428.0068456
|
|
GAO Y B , WEN Z C . Dual decoder image denoising method based on attention mechanism. Computer Engineering, 2024, 50 (9): 324- 332.
doi: 10.19678/j.issn.1000-3428.0068456
|
| 31 |
OTSU N . A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9 (1): 62- 66.
doi: 10.1109/TSMC.1979.4310076
|
| 32 |
CAO H M , LUO X B , PENG Y D , et al. MANet: a network architecture for remote sensing spatiotemporal fusion based on multiscale and attention mechanisms. Remote Sensing, 2022, 14 (18): 4600.
doi: 10.3390/rs14184600
|
| 33 |
|
| 34 |
SUN G Q , PAN Y Z , KONG W K , et al. DA-TransUNet: integrating spatial and channel dual attention with transformer U-Net for medical image segmentation. Frontiers in Bioengineering and Biotechnology, 2024, 12, 1398237.
doi: 10.3389/fbioe.2024.1398237
|