摘要: 以形态学分析和支持向量机为基础,构建了一套血细胞核显微图像自动分析与识别系统。在细胞核分割阶段,提出基于支持向量机的血液细胞核彩色图像分割算法。在特征提取环节中,除使用常规形态特征外,提出了一种新的能有效反映核分叶数差异的形态特征——腐蚀退化因子。采用“one-against-one”策略的多分类SVM方法对血细胞进行分类识别。实验测试表明,该系统具有较高的识别精度,平均识别率达94.13%。
关键词:
血液细胞核,
图像分割,
支持向量机,
腐蚀退化因子
Abstract: Based on morphological analysis and Support Vector Machines (SVM), a robust automatic analysis system of blood cell nuclei is developed. A novel algorithm for color image segmentation of blood cell nuclei based on the SVM is proposed. A new morphological feature named erosion degenerate factor is used to indicate the lobulated state of cell and achieves feature extraction by combining with traditional characteristics. One-against-one multi-class SVM is applied to classify the blood cell. Experimental results show that the proposed system yields better performance with the average recognition rate of 94.13%.
Key words:
blood cell nuclei,
image segmentation,
Support Vector Machines(SVM),
erosion degenerate factor
中图分类号:
曾 明;孟庆浩;张建勋;鲍菁丹. 基于形态特征和SVM的血液细胞核自动分析[J]. 计算机工程, 2008, 34(2): 14-16.
ZENG Ming; MENG Qing-hao; ZHANG Jian-xun; BAO Jing-dan. Automatic Analysis System of Blood Cell Nuclei Based on Morphological Features and Support Vector Machines[J]. Computer Engineering, 2008, 34(2): 14-16.