参考文献
[1]Biswas S,Aggarwal G,Flynn P J.Pose-robust Recognition of Low-resolution Face Images[J].IEEE Transactions on Pattern Analysis and Machine Intel-ligence,2013,35(12):3037-3049.
[2]刘哲,杨静,陈路.基于非局部稀疏编码的超分辨率图像复原[J].电子与信息学报,2015,37(3):522-528.
[3]潘宗序,禹晶,肖创柏,等.基于自适应多字典学习的单幅图像超分辨率算法[J].电子学报,2015,43(2):209-216.
[4]蔡苗苗,谈元鹏,曹飞龙.基于局部结构相似与协同表示的超分辨率图像重建[J].模式识别与人工智能,2014,27(9):787-793.
[5]杨爱萍,钟腾飞,何宇清.基于非局部相似性和分类半耦合字典学习的超分辨率重建[J].天津大学学报,2015,48(1):87-94.
[6]樊博,杨晓梅,胡学姝.基于压缩感知的超分辨率图像重建[J].计算机应用,2013,33(2):480-483.
[7]Maiseli B J,Ally N,Gao Huijun.A Noise-suppressing and Edge-preserving Multiframe Super-resolution Image Reconstruction Method[J].Signal Processing:Image Communication,2015,34:1-13.
[8]李展,陈清亮,彭青玉,等.基于MAP的单帧字符图像超分辨率重建[J].电子学报,2015,43(1):191-197.
[9]李民,程建,乐翔,等.稀疏字典编码的超分辨率重建[J].软件学报,2012,23(5):1315-1324.
[10]Singh A,Ahuja N.Learning Ramp Transformation for Single Image Super-resolution[J].Computer Vision and Image Understanding,2015,135:109-125.
[11]Lu Xiaoqiang,Huang Zihan,Yuan Yuan.MR Image Super-resolution via Manifold Regularized Sparse Learning[J].Neurocomputing,2015,162:96-104.
[12]邓承志,田伟,汪胜前,等.近似稀疏正则化的红外图像超分辨率重建[J].光学精密工程,2014,22(6):1648-1654.
[13]陈晓璇,齐春.基于低秩矩阵恢复和联合学习的图像超分辨率重建[J].计算机学报,2014,37(6):1372-1378.
[14]杨欣,费树岷,周大可,等.基于分类预测器及退化模型的图像超分辨率快速重建[J].东南大学学报,2013,43(1):35-38.
[15]王会鹏,周利莉,张杰.一种基于区域的双三次图像插值算法[J].计算机工程,2010,36(19):216-218.
[16]孙毓敏.一种基于融合的方向自适应插值算法及其应用[D].西安:西安电子科技大学,2009.
[17]邓海燕.面向超分辨率重建的图像放大与融合方法[D].大连:大连海事大学,2008.
编辑顾逸斐 |