作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程

• 图形图像处理 • 上一篇    下一篇

基于结构张量的GrabCut图像分割算法

张勇 1,袁家政 1,2,刘宏哲 1,李青 1   

  1. (1.北京联合大学 北京市信息服务工程重点实验室,北京 100101; 2.北京成像技术高精尖创新中心,北京 100048)
  • 收稿日期:2016-06-28 出版日期:2017-08-15 发布日期:2017-08-15
  • 作者简介:张勇(1990—),男,硕士研究生,主研方向为图像处理;袁家政,教授、博士后;刘宏哲,教授、博士;李青,讲师、博士。
  • 基金资助:
    国家自然科学基金(61271369,61502036,61571045);国家科技支撑计划项目(2014BAK08B,2015BAH55F03);北京市自然科学基金(4152018,4152016)。

GrabCut Image Segmentation Algorithm Based on Structure Tensor

ZHANG Yong 1,YUAN Jiazheng 1,2,LIU Hongzhe 1,LI Qing 1   

  1. (1.Beijing Key Laboratory of Information Service Engineering,Beijing Union University,Beijing 100101,China; 2.Beijing High-tech Innovation Center of Imaging Technology,Beijing 100048,China)
  • Received:2016-06-28 Online:2017-08-15 Published:2017-08-15

摘要: 传统的GrabCut图像分割方法大多基于图像的像素值建立图模型,未考虑到彩色图像中丰富的纹理信息。为此,提出一种新的GrabCut模型图像分割算法。对比基于结构张量的GrabCut分割方法和传统GrabCut分割方法的结果,利用结构张量和像素值构建紧缩的结构张量。为提高计算的简洁性和高效性,将GrabCut方法构建的混合高斯模型扩展到张量空间,并用Kullback-Leible散度代替常用的黎曼度量。在合成纹理图像和自然图像上进行的实验结果表明,与Carsten Rother,GACWRF等方法相比,该算法具有更精确的分割效果,不仅实现了纹理信息与颜色信息的无参融合,而且提高了计算效率。

关键词: 图像分割, 结构张量, 图割模型, Kullback-Leible散度, 混合高斯模型

Abstract: Traditional GrabCut based image segmentation method is mainly based on the image pixel values to build a graph model,and does not take into account the rich texture of color image information.This paper presents an image segmentation algorithm based on GrabCut model,and contrasts results of Structure Tensor(ST) GrabCut segmentation method and traditional GrabCut segmentation method.The method uses the ST and the pixel values to construct the tight ST.For concise and efficient calculation,this paper extends Gaussian Mixture Model(GMM) built based on Grabcut method to tensor space,and uses Kullback-Leible(KL) divergence instead of the commonly used the Riemannian metric.Through a lot of experiments on synthetic texture images and natural images,results show that,compared with carstem Rother,GACWRF method the algorithm has more accurate segmentation effects,not only achieves the texture and color information parameter fusion,but also improves the computational efficiency.

Key words: image segmentation, Structure Tensor(ST), GrabCut model, Kullback-Leible(KL) divergence, Gaussian Mixture Model(GMM)

中图分类号: