参考文献 [1]LECUN Y,BOSER B E,DENKER J S.Backpropagation applied to handwritten zip code recognition[J].Neural Computation,1989,1(4):541-551. [2]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems.[S.l.]:Curran Associates,Inc.,2012:1097-1105. [3]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2017-03-05].http://www.robots.ox.ac.uk:5000/~vgg/publications/2015/Simonyan15/simonyan15.pdf. [4]SZEGEDY C,LIU W,JIA Y.Going deeper with convolu-tions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:1-9. [5]LIN M,CHEN Q,YAN S.Network in network[EB/OL].[2017-03-15].https://arxiv.org/pdf/1312.4400.pdf. [6]HE K,ZHANG X,REN S.Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:770-778. [7]WOLPERT D.Stacked generalization[J].Neural Networks,1992,5(2):241-260. [8]TSOUMAKAS G,VLAHAVAS I.Distributed data mining of large classifier ensembles[C]//Proceedings of Companion Volume of the 2nd Hellenic Conference on Artificial Intelligence.Berlin,Germany:Springer,2002:249-256. [9]韦艳艳,李陶深.一种基于投票的Stacking方法[J].计算机工程,2006,32(7):199-201. [10]MACKIEWICZ A,RATAJCZAK W.Principal components analysis(PCA)[J].Computers and Geosciences,1993,19(3):303-342. [11]刘丽敏,樊晓平,廖志芳.基于迹范数的L1-PCA算法[J].计算机工程,2013,39(4):199-202. [12]ZOU H,HASTIE T,TIBSHIRANI R.Sparse principal component analysis[J].Journal of Computational and Graphical Statistics,2006,15(2):265-286. [13]KING G,ZENG L.Logistic regression in rare events data[J].Political Analysis,2001,9(2):137-163. [14]ZHANG T.Solving large scale linear prediction problems using stochastic gradient descent algorithms[C]//Proceedings of the 21st International Conference on Machine Learning.New York,USA:ACM Press,2004:919-926. [15]RECHT B,RE C,WRIGHT S,et al.Hogwild:a lock-free approach to parallelizing stochastic gradient descent[C]//Proceedings of the 24th International Conference on Neural Information Processing Systems.New York,USA:ACM Press,2011:693-701. 编辑吴云芳 |