作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2007, Vol. 33 ›› Issue (24): 203-205.

• 人工智能及识别技术 • 上一篇    下一篇

基于L1范数的图像超分辨率及差分统计模型

倚海伦,王 庆   

  1. 西北工业大学计算机学院,西安 710072
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2007-12-20 发布日期:2007-12-20

L1-norm-based Image Super-resolution and Its Differential Statistical Model

YI Hai-lun, WANG Qing   

  1. School of Computer, Northwestern Polytechnical University, Xi’an 710072
  • Received:1900-01-01 Revised:1900-01-01 Online:2007-12-20 Published:2007-12-20

摘要: 在L1范数图像超分辨率重建框架下,引入参数自适应估计,该方法对模型误差表现出良好的稳健性并且可以加速收敛。结合差分图像统计特性和概率先验模型,解释了L1范数形式的双边全变差正则项概念,利用Kullback-Leibler距离证明了该正则项的优越性,并分析了混合先验模型在超分辨率重建中应用的可行性等问题。

关键词: 超分辨率, 正则化, 差分图像

Abstract: A method for automatically estimating parameters is applied to the L1-norm-based image super-resolution reconstruction framework. The approach can get a stable result with model errors and can improve convergence. A novel explanation of L1-norm-based bilateral total variation(BTV) term is presented according to pixel differences statistics, combined with probability prior model. Superiority of BTV is validated using Kullback-Leibler distance. A theoretical analysis of the feasibility and the problems of super-resolution reconstruction are given using mixture prior distribution.


Key words: super-resolution, regularization, pixel difference image

中图分类号: