[1] LUO Bin,XIA Jingbo.A novel intrusion detection system based on festure generation with visualization strategy[J].Expert Systems with Applications,2014,41(9):4139-4147. [2] SANTORO D,ESCUDERO-ANDREU G,KYRIAKO P G,et al.A hybrid intrusion detection system for virtual jamming attacks on wireless networks[J].Measurement,2017,109:79-87. [3] ABBES T,BOUHOULA A,RUSINOWITCH M.Efficient decision tree for protocol analysis in intrusion detection[J].International Journal of Security and Networks,2010,5(4):220-235. [4] ZHAO Huiqun,LIU Jinluan.Research on complex event big data processing system test data generation method based on Bayesian network[J].Application Research of Computers,2018,35(8):155-158,162.(in Chinese)赵会群,刘金銮.基于贝叶斯网络的复杂事件大数据处理系统测试数据生成方法研究[J].计算机应用研究,2018,35(8):155-158,162. [5] LI Shuohao,ZHANG Jun.Review of Bayesian networks structure learning[J].Application Research of Computers,2015,32(3):641-646.(in Chinese)李硕豪,张军.贝叶斯网络结构学习综述[J].计算机应用研究,2015,32(3):641-646. [6] WANG Haiyan,LI Jianhui,YANG Fenglei.Overview of support vector machine analysis and algorithm[J].Application Research of Computers,2014,31(5):1281-1286.(in Chinese)汪海燕,黎建辉,杨风雷.支持向量机理论及算法研究综述[J].计算机应用研究,2014,31(5):1281-1286. [7] SINGH R,KUMAR H,SINGLA R K.An instrsion detection system using network traffic profiling and online sequential extreme learning machine[J].Expert Systems with Applications,2015,42(22):8609-8624. [8] GU G X,CHEN C,BUEHLER M J.De novo composite design based on machine learning algorithm[J].Extreme Mechanics Letters,2018(18):19-28. [9] WANG Wei,ZHU Ming,ZENG Xuewen,et al.Malware traffic classification using convolutional neural network for representation learning[C]//Proceedings of 2017 International Conference on Information Networking.Washington D.C.,USA:IEEE Press,2017:712-717. [10] JAVAID A,NIYAZ Q,SUN Wenqing,et al.A deep learning approach for network intrusion detection system[C]//Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies.New York,USA:ACM Press,2016:21-26. [11] QU Feng,ZHANG Jitao,SHAO Zetian,et al.An intrusion detection model based on deep belief networks[C]//Proceedings of 2014 International Conference on Network,Communication and Computing.New York,USA:ACM Press,2014:97-101. [12] ZHANG Yuqing,DONG Ying,LIU Caiyun,et al.Situation,trends and prospects of deep learning applied to cyberspace security[J].Journal of Computer Research and Development,2018,55(6):1117-1142.(in Chinese)张玉清,董颖,柳彩云,等.深度学习应用于网络空间安全的现状、趋势与展望[J].计算机研究与发展,2018,55(6):1117-1142. [13] KIM J,KIM J,THU H L T,et al.Long short term memory recurrent neural network classifier for intrusion detection[C]//Proceedings of 2016 International Conference on Platform Technology and Service.Washington D.C.,USA:IEEE Press,2016:1-5. [14] SHEN Xiajiong,WANG Long,HAN Daojun.Application of BP neural network optimized by artificial bee colony in intrusion detection[J].Computer Engineering,2016,42(2):190-194.(in Chinese)沈夏炯,王龙,韩道军.人工蜂群优化的BP神经网络在入侵检测中的应用[J].计算机工程,2016,42(2):190-194. [15] ZHU Huming,LI Pei,JIAO Licheng,et al.Review of parallel deep neural network[J].Chinese Journal of Computers,2018,41(8):1861-1881.(in Chinese)朱虎明,李佩,焦李成,等.深度神经网络并行化研究综述[J].计算机学报,2018,41(8):1861-1881. [16] JIA Fan,KONG Lingzhi.Intrusion detection algorithm based on convolutional neural network[J].Transactions of Beijing Institute of Technology,2017,37(12):1271-1275.(in Chinese)贾凡,孔令智.基于卷积神经网络的网络入侵检测算法[J].北京理工大学学报,2017,37(12):1271-1275. [17] HASSAN A,MAHMOOD A.Efficient deep learning model for text classification based on recurrent and convolutional layers[C]//Proceedings of IEEE International Conference on Machine Learning and Applications.Washington D.C.,USA:IEEE Press,2018:1108-1113. [18] YIN Rui,SU Songzhi,LI Shaozi.Convolutional neural network's image moment regularizing strategy[J].CAAI Transactions on Intelligent Systems,2016,11(1):43-48.(in Chinese)殷瑞,苏松志,李绍滋.一种卷积神经网络的图像矩正则化策略[J].智能系统学报,2016,11(1):43-48. [19] MEDHAT W,HASSAN A,KORASHY H.Sentiment analysis algorithms and applications:a survey[J].Ain Shams Engineering Journal,2014,5(4):1093-1113. [20] STAUDEMEYER R C.Applying long short-term memory recurrent neural networks to intrusion detection[J].South African Computer Journal,2015,56(1):136-145. |