作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2019, Vol. 45 ›› Issue (12): 127-133. doi: 10.19678/j.issn.1000-3428.0053263

• 安全技术 • 上一篇    下一篇

融合CNN与BiLSTM的网络入侵检测方法

刘月峰, 蔡爽, 杨涵晰, 张晨荣   

  1. 内蒙古科技大学 信息工程学院, 内蒙古 包头 014010
  • 收稿日期:2018-11-27 修回日期:2019-01-13 发布日期:2019-01-22
  • 作者简介:刘月峰(1977-),男,副教授、博士,主研方向为网络入侵检测、深度学习;蔡爽、杨涵晰、张晨荣,硕士研究生。
  • 基金资助:
    国家自然科学基金(51565046);内蒙古自然科学基金(2018MS06019)。

Network Intrusion Detection Method Integrating CNN and BiLSTM

LIU Yuefeng, CAI Shuang, YANG Hanxi, ZHANG Chenrong   

  1. School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, China
  • Received:2018-11-27 Revised:2019-01-13 Published:2019-01-22

摘要: 针对网络入侵检测准确率偏低而误报率偏高的问题,提出一种融合卷积神经网络(CNN)与双向长短期记忆(BiLSTM)网络的网络入侵检测方法。对KDDcup99数据集进行预处理,并分别使用CNN模型、BiLSTM模型提取局部特征和长距离依赖特征,通过注意力机制计算特征的重要性,利用softmax分类器获得最终的分类结果。实验结果表明,与基于CNN和基于LSTM的方法相比,该方法的网络入侵检测效果较好,其准确率可提高至95.0%,误检率可降低至5.1%。

关键词: 深度学习, 卷积神经网络, 双向长短期记忆, 注意力机制, 入侵检测

Abstract: To address the problem of low network intrusion detection accuracy and high false positive rate,a network intrusion detection method integrating Convolutional Neural Network(CNN) and Bidirectional Long Short-Term Memory(BiLSTM) network is proposed.The KDDcup99 data set is preprocessed,and the local features and long-distance dependent features are extracted using the CNN model and the BiLSTM model,respectively.The importance of features is calculated by using the introduced attention mechanism,and the final classification results are obtained by using the softmax classifier.Experimental results show that compared with CNN-based and LSTM-based methods,the proposed method has better network intrusion detection performance,its accuracy can be improved to 95.0%,and the false detection rate can be reduced to 5.1%.

Key words: deep learning, Convolutional Neural Network(CNN), Bidirectional Long Short-Term Memory(BiLSTM), attention mechanism, intrusion detection

中图分类号: