[1]张晨光,张燕.半监督学习[M].北京:中国农业科学技术出版社,2013.
[2]NIGAM K,MCCALLUM A K,THRUN S,et al.Text classification from labeled and unlabeled documents using EM[J].Machine Learning,2000,38(2/3):103-134.
[3]BLUM A,MITCHELL T.Combining labeled and unlabeled data with co-training[C]//Proceedings of the 11th Conference on Computational Learning Theory.New York,USA:ACM Press,1998:92-100.
[4]JOACHIMS T.Transductive inference for text classifica-tion using support vector machines[C]//Proceedings of International Conference on Machine Learning.San Francisco,USA:Morgan Kaufmann Publishers,1999:200-209.
[5]ZHU X J,GHAHRAMANI Z,LAFFERTY J D.Semi-supervised learning using gaussian fields and harmonic functions[C]//Proceedings of the 12th International Conference on Machine Learning.Palo Alto,USA:AAAI Press,2003:912-919.
[6]ZHOU Z H.Ensemble methods:foundations and algorithms[M].London,UK:Taylor and Francis Group,2012.
[7]FRNAY B,VERLEYSEN M.Classification in the presence of label noise:a survey[J].IEEE Transactions on Neural Networks and Learning Systems,2014,25(5):845-869.
[8]刘康,钱旭,王自强.主动学习算法综述[J].计算机工程与应用,2012,48(34):1-4.
(下转第168页)
(上接第162页)
[9]BREIMAN L.Bagging predictors[J].Machine Learning,1996,24(2):123-140.
[10]SCHAPIRE R E,FREUND Y,BARTLETT P,et al.Boosting the margin:a new explanation for the effectiveness of voting methods[C]//Proceedings of the 14th International Conference on Machine Learning.San Francisco,USA:Morgan Kaufmann Publishers,1997:322-330.
[11]MANWANI N,SASTRY P S.Noise tolerance under risk minimization[J].IEEE Transactions on Cybernetics,2013,43(3):1146-1151.
[12]TEWARI A,BARTLETT P L.On the consistency of multiclass classification methods[C]//Proceedings of International Conference on Computational Learning Theory.Berlin,Germany:Springer,2007:143-157.
[13]SHAWE-TAYLOR J,BARTLETT P L,WILLIAMSON R C,et al.Structural risk minimization over data-dependent hierarchies[J].IEEE Transactions on Information Theory,1998,44(5):1926-1940.
[14]WESTON J,WATKINS C.Multi-class support vector machines[C]//Proceedings of European Symposia on Artificial Neural Networks.Brussels,Belgium:[s.n.],1999:83-128.
[15]BARTLETT P L,JORDAN M I,MCAULIFFE J D.Convexity,classification,and risk bounds[J].Journal of the American Statistical Association,2006,101(473):138-156.
[16]SZEGEDY C,IOFFE S,VANHOUCKE V,et al.Inception-v4,inception-resnet and the impact of residual connections on learning[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence.Palo Alto,USA:AAAI Press,2017:4278-4284.
[17]MALLAPRAGADA P K,JIN R,JAIN A K,et al.SemiBoost:boosting for semi-supervised learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(11):2000-2014.
[18]LI Y Y,SU L,CHEN J,et al.Semi-supervised question classification based on ensemble learning[C]//Proceedings of International Conference on Swarm Intelligence.Berlin,Germany:Springer,2015:341-348.
[19]GUYON I.Design of experiments for the NIPS 2003 variable selection benchmark[EB/OL].[2018-01-05].http://clopinet.com/isabelle/Projects/NIPS2003/Slides/ NIPS2003-Datasets.pdf. |