[1]单连平,窦强.基于深度学习的海战场图像目标识别[J].指挥控制与仿真,2019(1):1-5.
[2]ROUTRAY S,RAY A K,MISHRA C,et al.Efficient hybrid image denoising scheme based on SVM classification[J].Optik,2018,157:503-511.
[3]余永维,殷国富,殷鹰,等.基于深度学习网络的射线图像缺陷识别方法[J].仪器仪表学报,2014,35(9):2012-2018.
[4]LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
[5]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems.New York,USA:ACM Press,2012:1097-1105.
[6]SZEGEDY C,LIU Wei,JIA Yangqing,et al.Going deeper with convolutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:1-9.
[7]HUBEL D H,WIESEL T N.Receptive fields,binocular interaction and functional architecture in the cat’s visual cortex[J].The Journal of Physiology,1962,160(1):106-154.
[8]肖志鹏,王小华,杨冰,等.基于卷积神经网络的绘画图像分类研究[J].中国计量大学学报,2017,28(2):227-232.
[9]SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:2818-2826.
[10]WILSON D R,MARTINEZ T R.The general inefficiency of batch training for gradient descent learning[J].Neural Networks,2003,16(10):1429-1451.
[11]ZINKEVICH M,WEIMER M,SMOLA A J,et al.Parallelized stochastic gradient descent[EB/OL].[2017-12-25].http://martin.zinkevich.org/publica tions/nips20 10.pdf.
[12]KONECNY J,LIU Jie,RICHTARIK P,et al.Mini-batch semi-stochastic gradient descent in the proximal setting[J].IEEE Journal of Selected Topics in Signal Processing,2016,10(2):242-255.
[13]刘立峰,武奇生,姚博彬.基于高斯尺度空间和SVM的桥梁裂缝检测研究[J].工业仪表与自动化装置,2019(1):13-16,114.
[14]胡翩翩,曾碧卿.基于HS-BP神经网络的认知无线电频谱预测技术[J].计算机工程,2017,43(7):146-150,155.
[15]邹冲,蔡敦波,赵娜,等.基于SVM-LeNet模型融合的行人检测算法[J].计算机工程,2017,43(5):170-173. |