[1] |
RUSU R B,MARTON Z C,BLODOW N,et al.Learning informative point classes for the acquisition of object model maps[C]//Proceedings of the 10th International Conference on Control,Automation,Robotics and Vision.Washington D.C.,USA:IEEE Press,2008:643-650.
|
[2] |
RUSU R B,BRADSKI G,THIBAUX R,et al.Fast 3D recognition and pose using the viewpoint feature histogram[C]//Proceedings of 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.Washington D.C.,USA:IEEE Press,2010:2155-2162.
|
[3] |
WANG Jinjiang,CHEN Yang,TIAN Qingguo,et al.A feature point detection method for scattered point cloud based on point signature[J].Computer Engineering,2014,40(7):174-178.(in Chinese)王晋疆,陈阳,田庆国,等.一种基于点签名的散乱点云特征点检测方法[J].计算机工程,2014,40(7):174-178.
|
[4] |
MATURANA D,SCHERER S.VoxNet:a 3D convolutional neural network for real-time object recognition[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems.Washington D.C.,USA:IEEE Press,2015:922-928.
|
[5] |
CHARLES R Q,HAO S,MO K C,et al.PointNet:deep learning on point sets for 3D classification and segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:652-660.
|
[6] |
QI C R,YI L,SU H,et al.Pointnet++:deep hierarchical feature learning on point sets in a metric space[EB/OL].[2019-12-01].https://arxiv.org/pdf/1706.02413.pdf.
|
[7] |
ZHAO Zhongyang,CHENG Yinglei,SHI Xiaosong,et al.Terrain classification of LiDAR point cloud based on multi-scale features and PointNet[J].Laser & Optoelectronics Progress,2019,56(5):243-250.(in Chinese)赵中阳,程英蕾,释小松,等.基于多尺度特征和PointNet的LiDAR点云地物分类方法[J].激光与光电子学进展,2019,56(5):243-250.
|
[8] |
LI Yangyan,BU Rui,SUN Mingchao,et al. PointCNN:convolution on X-transformed points[J].Advances in Neural Information Processing Systems,2018,31:820-830.
|
[9] |
SU H,MAJI S,KALOGERAKIS E,et al.Multi-view convolutional neural networks for 3D shape recognition[EB/OL].[2019-12-01].http://de.arxiv.org/pdf/1505.00880.
|
[10] |
FENG Yiyan,ZHANG Zizhao,ZHAO Xibin,et al.GVCNN:group-view convolutional neural networks for 3D shape recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:264-272.
|
[11] |
HEGDE V,ZADEH R.Fusionnet:3D object classification using multiple data representations[EB/OL].[2019-12-01].https://arxiv.org/pdf/1607.05695v3.pdf.
|
[12] |
LECUN Y,BOSER B,DENKER J S,et al.Backpropagation applied to handwritten zip code recognition[J].Neural Computation,1989,1(4):541-551.
|
[13] |
KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90.
|
[14] |
SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2019-12-01].https://arxiv.org/pdf/1409.1556.pdf.
|
[15] |
HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:770-778.
|
[16] |
XIE S N,GIRSHICK R,DOLLAR P,et al.Aggregated residual transformations for deep neural networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:1492-1500.
|
[17] |
WANG P Q,CHEN P F,YUAN Y,et al.Understanding convolution for semantic segmentation[C]//Proceedings of 2018 IEEE Winter Conference on Applications of Computer Vision.Washington D.C.,USA:IEEE Press,2018:1451-1460.
|
[18] |
WU Z R,SONG S R,KHOSLA A,et al.3D ShapeNets:a deep representation for volumetric shapes[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:1912-1920.
|
[19] |
SU J C,GADELHA M,WANG R,et al.A deeper look at 3D shape classifiers[EB/OL].[2019-12-01].https://arxiv.org/pdf/1809.02560.pdf.
|
[20] |
CIGNONI P,CALLIERI M,CORSINI M,et al.Meshlab:an open-source mesh processing tool[EB/OL].[2019-12-01].https://www.ixueshu.com/document/d4e62e8106997b29318947a18e7f9386.html.
|
[21] |
LIU X H,HAN Z Z,LIU Y S,et al.Point2Sequence:learning the shape representation of 3D point clouds with an attention-based sequence to sequence network[EB/OL].[2019-12-01].https://arxiv.org/pdf/1811.02565.pdf.
|