| 1 | 
																						 
											  ABRÀMOFF M D, GARVIN M K, SONKA M. Retinal imaging and image analysis. IEEE Reviews in Biomedical Engineering, 2010, 3, 169- 208.  
											 												 
																									doi: 10.1109/RBME.2010.2084567    
																																															 											 | 
										
																													
																						| 2 | 
																						 
											  ROUHI R, JAFARI M, KASAEI S, et al. Benign and malignant breast tumors classification based on region growing and CNN segmentation. Expert Systems with Applications, 2015, 42(3): 990- 1002.  
											 												 
																									doi: 10.1016/j.eswa.2014.09.020    
																																															 											 | 
										
																													
																						| 3 | 
																						 
											  AQUINO A, GEGÚNDEZ-ARIAS M E, MARÍN D. Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Transactions on Medical Imaging, 2010, 29(11): 1860- 1869.  
											 												 
																									doi: 10.1109/TMI.2010.2053042    
																																															 											 | 
										
																													
																						| 4 | 
																						 
											  LEE Y, HARA T, FUJITA H, et al. Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique. IEEE Transactions on Medical Imaging, 2001, 20(7): 595- 604.  
											 												 
																									doi: 10.1109/42.932744    
																																															 											 | 
										
																													
																						| 5 | 
																						 
											 
											 											 | 
										
																													
																						| 6 | 
																						 
											  LECUN Y, BENGIO Y, HINTON G. Deep learning. Nature, 2015, 521(7553): 436- 444.  
											 												 
																									doi: 10.1038/nature14539    
																																															 											 | 
										
																													
																						| 7 | 
																						 
											  PHAM D L, XU C, PRINCE J L. Current methods in medical image segmentation. Annual Review of Biomedical Engineering, 2000, 2, 315- 337.  
											 												 
																									doi: 10.1146/annurev.bioeng.2.1.315    
																																															 											 | 
										
																													
																						| 8 | 
																						 
											  ZHENG Y H, JEON B, XU D H, et al. Image segmentation by generalized hierarchical fuzzy C-means algorithm. Journal of Intelligent & Fuzzy Systems, 2015, 28(2): 961- 973. 
											 											 | 
										
																													
																						| 9 | 
																						 
											  CHEN H, QI X J, YU L Q, et al. DCAN: deep contour-aware networks for object instance segmentation from histology images. Medical Image Analysis, 2017, 36, 135- 146.  
											 												 
																									doi: 10.1016/j.media.2016.11.004    
																																															 											 | 
										
																													
																						| 10 | 
																						 
											  RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2015: 234-241. 
											 											 | 
										
																													
																						| 11 | 
																						 
											  WANG C, ZHAO Z Y, REN Q Q, et al. Dense U-Net based on patch-based learning for retinal vessel segmentation. Entropy, 2019, 21(2): 168.  
											 												 
																									doi: 10.3390/e21020168    
																																															 											 | 
										
																													
																						| 12 | 
																						 
											  XIAO X, LIAN S, LUO Z M, et al. Weighted Res-UNet for high-quality retina vessel segmentation[C]//Proceedings of the 9th International Conference on Information Technology in Medicine and Education. Washington D. C., USA: IEEE Press, 2018: 327-331. 
											 											 | 
										
																													
																						| 13 | 
																						 
											  LIN B S, MICHAEL K, KALRA S, et al. Skin lesion segmentation: U-Nets versus clustering[C]//Proceedings of IEEE Symposium Series on Computational Intelligence. Washington D. C., USA: IEEE Press, 2018: 1-7. 
											 											 | 
										
																													
																						| 14 | 
																						 
											  SIRINUKUNWATTANA K, PLUIM J P W, CHEN H, et al. Gland segmentation in colon histology images: the GLAS challenge contest. Medical Image Analysis, 2017, 35, 489- 502.  
											 												 
																									doi: 10.1016/j.media.2016.08.008    
																																															 											 | 
										
																													
																						| 15 | 
																						 
											  ÇIÇEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2016: 424-432. 
											 											 | 
										
																													
																						| 16 | 
																						 
											  SETIO A A A, TRAVERSO A, DE BEL T, et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. Medical Image Analysis, 2017, 42, 1- 13.  
											 												 
																									doi: 10.1016/j.media.2017.06.015    
																																															 											 | 
										
																													
																						| 17 | 
																						 
											  YU L Q, YANG X, CHEN H, et al. Volumetric ConvNets with mixed residual connections for automated prostate segmentation from 3D MR images[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2017: 66-72. 
											 											 | 
										
																													
																						| 18 | 
																						 
											 IGLOVIKOV V, SHVETS A. TernausNet: U-Net with VGG11 encoder pre-trained on ImageNet for image segmentation[EB/OL]. [2022-09-11].  https://arxiv.org/abs/1801.05746.  
											 											 | 
										
																													
																						| 19 | 
																						 
											 
											 											 | 
										
																													
																						| 20 | 
																						 
											  KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60(6): 84- 90.  
											 												 
																									doi: 10.1145/3065386    
																																															 											 | 
										
																													
																						| 21 | 
																						 
											  ZHOU Z W, MAHFUZUR R S, TAJBAKHSH N, et al. U-Net++: a nested U-Net architecture for medical image segmentation. Berlin, Germany: Springer International Publishing, 2018. 
											 											 | 
										
																													
																						| 22 | 
																						 
											 
											 											 | 
										
																													
																						| 23 | 
																						 
											 ALOM M Z, HASAN M, YAKOPCIC C, et al. Recurrent residual convolutional neural network based on U-Net(R2U-Net) for medical image segmentation[EB/OL]. [2022-09-11].  https://arxiv.org/abs/1802.06955.  
											 											 | 
										
																													
																						| 24 | 
																						 
											  YANG X, LI Z Q, GUO Y Q, et al. DCU-Net: a deformable convolutional neural network based on cascade U-Net for retinal vessel segmentation. Multimedia Tools and Applications, 2022, 81(11): 15593- 15607.  
											 												 
																									doi: 10.1007/s11042-022-12418-w    
																																															 											 | 
										
																													
																						| 25 | 
																						 
											  朱辉, 秦品乐. 基于多尺度特征结构的U-Net肺结节检测算法. 计算机工程, 2019, 45(4): 254- 261.  
											 												 
																									doi: 10.19678/j.issn.1000-3428.0051769    
																																															 											 | 
										
																													
																						 | 
																						 
											  ZHU H, QIN P L. U-Net pulmonary nodule detection algorithm based on multi-scale feature structure. Computer Engineering, 2019, 45(4): 254- 261.  
											 												 
																									doi: 10.19678/j.issn.1000-3428.0051769    
																																															 											 | 
										
																													
																						| 26 | 
																						 
											  SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2017: 4278-4284. 
											 											 | 
										
																													
																						| 27 | 
																						 
											  SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 2818-2826. 
											 											 | 
										
																													
																						| 28 | 
																						 
											  袁单飞, 陈慈发, 董方敏. 基于多尺度分割的图像识别残差网络研究. 计算机工程, 2022, 48(5): 258-262, 271.  
											 												 
																									doi: 10.19678/j.issn.1000-3428.0061392    
																																															 											 | 
										
																													
																						 | 
																						 
											  YUAN D F, CHEN C F, DONG F M. Research on residual network of image recognition based on multiscale split. Computer Engineering, 2022, 48(5): 258-262, 271.  
											 												 
																									doi: 10.19678/j.issn.1000-3428.0061392    
																																															 											 | 
										
																													
																						| 29 | 
																						 
											  SANDLER M, HOWARD A, ZHU M L, et al. MobileNetv2: inverted residuals and linear bottlenecks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 4510-4520. 
											 											 | 
										
																													
																						| 30 | 
																						 
											  CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 1800-1807. 
											 											 | 
										
																													
																						| 31 | 
																						 
											  曹渝昆, 桂丽嫒. 基于深度可分离卷积的轻量级时间卷积网络设计. 计算机工程, 2020, 46(9): 95-100, 109.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						 | 
																						 
											  CAO Y K, GUI L A. Design of lightweight temporal convolutional network based on depthwise separable convolution. Computer Engineering, 2020, 46(9): 95-100, 109.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						| 32 | 
																						 
											  周东明, 张灿龙, 唐艳平, 等. 联合语义分割与注意力机制的行人再识别模型. 计算机工程, 2022, 48(2): 201- 206.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						 | 
																						 
											  ZHOU D M, ZHANG C L, TANG Y P, et al. Pedestrian re-identification model combining semantic segmentation and attention mechanism. Computer Engineering, 2022, 48(2): 201- 206.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						| 33 | 
																						 
											  LITJENS G, KOOI T, BEJNORDI B E, et al. A survey on deep learning in medical image analysis. Medical Image Analysis, 2017, 42, 60- 88.  
											 												 
																									doi: 10.1016/j.media.2017.07.005    
																																															 											 | 
										
																													
																						| 34 | 
																						 
											  CODELLA N C F, GUTMAN D, CELEBI M E, et al. Skin lesion analysis toward melanoma detection[C]//Proceedings of the 15th International Symposium on Biomedical Imaging. Washington, USA. IEEE Press, 2018: 168-172. 
											 											 | 
										
																													
																						| 35 | 
																						 
											  BERNAL J, SÁNCHEZ F J, FERNÁNDEZ-ESPARRACH G, et al. WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. Computerized Medical Imaging and Graphics, 2015, 43, 99- 111.  
											 												 
																									doi: 10.1016/j.compmedimag.2015.02.007    
																																															 											 | 
										
																													
																						| 36 | 
																						 
											  ARGANDA-CARRERAS I, TURAGA S C, BERGER D R, et al. Crowdsourcing the creation of image segmentation algorithms for connectomics. Frontiers in Neuroanatomy, 2015, 9, 142. 
											 											 | 
										
																													
																						| 37 | 
																						 
											  CARDONA A, SAALFELD S, PREIBISCH S, et al. An integrated micro- and macro-architectural analysis of the Drosophila brain by computer-assisted serial section electron microscopy. PLoS Biology, 2010, 8(10): e1000502.  
											 												 
																									doi: 10.1371/journal.pbio.1000502    
																																															 											 | 
										
																													
																						| 38 | 
																						 
											  VAN ROSSUM G. Python programming language[C]//Proceedings of USENIX Annual Technical Conference. Washington D. C., USA: IEEE Press, 2007: 1-36. 
											 											 | 
										
																													
																						| 39 | 
																						 
											  MCGUINNESS K, O'CONNOR N E. A comparative evaluation of interactive segmentation algorithms. Pattern Recognition, 2010, 43(2): 434- 444.  
											 												 
																									doi: 10.1016/j.patcog.2009.03.008    
																																															 											 | 
										
																													
																						| 40 | 
																						 
											  楼鑫杰, 李小薪, 刘志勇. 基于反馈机制的图像超分辨率重建算法. 计算机工程, 2022, 48(2): 261- 267.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						 | 
																						 
											  LOU X J, LI X X, LIU Z Y. Super-resolution image reconstruction algorithm based on feedback mechanism. Computer Engineering, 2022, 48(2): 261- 267.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						| 41 | 
																						 
											  KOHAVI R. A study of cross-validation and bootstrap for accuracy estimation and model selection[C]//Proceedings of the 14th International Joint Conference on Artificial Intelligence. San Francisco, USA: Morgan Kaufmann Publishers Inc., 1995: 1137-1145. 
											 											 |