[1] KIM J, LEE J K, LEE K M.Deeply-recursive convolutional network for image super-resolution[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:1637-1645. [2] SHI W, CABALLERO J, HUSZÁR F, et al.Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:1874-1883. [3] DONG C, LOY C C, TANG X.Accelerating the super-resolution convolutional neural network[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:391-407. [4] KIM J, LEE J K, LEE K M.Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:1646-1654. [5] TONG T, LI G, LIU X, et al.Image super-resolution using dense skip connections[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:4799-4807. [6] ZHANG Y, LI K, LI K, et al.Image super-resolution using very deep residual channel attention networks[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:286-301. [7] 刘锡泽, 范红, 海涵, 等.基于密集反馈网络的单幅图像超分辨率重建[J].计算机工程, 2021, 47(11):254-261. LIU X Z, FAN H, HAI H, et al.Super-resolution reconstruction of a single image based on dense feedback network[J].Computer Engineering, 2021, 47(11):254-261.(in Chinese) [8] 程德强, 郭昕, 陈亮亮, 等.多通道递归残差网络的图像超分辨率重建[J].中国图象图形学报, 2021, 26(3):605-618. CHENG D Q, GUO X, CHEN L L, et al.Image super-resolution reconstruction from multi-channel recursive residual network[J].Journal of Image and Graphics, 2021, 26(3):605-618.(in Chinese) [9] SHA F, ZANDAVI S M, CHUNG Y Y.Fast deep parallel residual network for accurate super resolution image processing[J].Expert Systems with Applications, 2019, 128:157-168. [10] SHANG T, DAI Q, ZHU S, et al.Perceptual extreme super-resolution network with receptive field block[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C., USA:IEEE Press, 2020:440-441. [11] XIAO M, ZHENG S, LIU C, et al.Invertible image rescaling[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2020:126-144. [12] LUO X, XIE Y, ZHANG Y, et al.Latticenet:towards lightweight image super-resolution with lattice block[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2020:272-289. [13] 胡德敏, 王揆豪, 林静.渐进式生成对抗网络的人脸超分辨率重建[J].小型微型计算机系统, 2021, 42(9):1955-1961. HU D M, WANG K H, LIN J.Progressive GAN for face image super-resolution[J].Journal of Chinese Computer Systems, 2021, 42(9):1955-1961.(in Chinese) [14] 孙超文, 陈晓.基于多尺度特征融合反投影网络的图像超分辨率重建[J].自动化学报, 2021, 47(7):1689-1700. SUN C W, CHEN X.Multiscale feature fusion back-projection network for image super-resolution[J].Acta Automatica Sinica, 2021, 47(7):1689-1700.(in Chinese) [15] LEDIG C, THEIS L, HUSZÁR F, et al.Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:4681-4690. [16] LIM B, SON S, KIM H, et al.Enhanced deep residual networks for single image super-resolution[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C., USA:IEEE Press, 2017:136-144. [17] RATLIFF L J, BURDEN S A, SASTRY S S.Characterization and computation of local Nash equilibria in continuous games[C]//Proceedings of the 51st Annual Allerton Conference on Communication, Control, and Computing.Washington D.C., USA:IEEE Press, 2013:917-924. [18] HU J, SHEN L, SUN G.Squeeze-and-excitation networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:7132-7141. [19] WOO S, PARK J, LEE J Y, et al.CBAM:convolutional block attention module[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:3-19. [20] FU J, LIU J, TIAN H, et al.Dual attention network for scene segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:3146-3154. [21] HAHNLOSER R H R, SARPESHKAR R, MAHOWALD M A, et al.Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit[J].Nature, 2000, 405(6789):947-951. [22] CLEVERT D A, UNTERTHINER T, HOCHREITER S.Fast and accurate deep network learning by exponential linear units (ELUs)[EB/OL].[2021-10-20].https://arxiv.org/abs/1511.07289 [23] RAMACHANDRAN P, ZOPH B, LE Q V.Searching for activation functions[EB/OL].[2021-10-20].https://arxiv.org/pdf/1710.05941.pdf. [24] MA N, ZHANG X, LIU M, et al.ACtivate Or Not:learning customized ctivation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:8032-8042. [25] LIU Z, LUO P, WANG X, et al.Deep learning face attributes in the wild[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2015:3730-3738. [26] ZHANG R, ISOLA P, EFROS A A, et al.The unreasonable effectiveness of deep features as a perceptual metric[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:586-595. |