[1] YE M, SHEN J, LIN G, et al. Deep learning for person re-identification:a survey and outlook[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(6):2872-2893. [2] QIAN X L, FU Y W, XIANG T, et al. Pose-normalized image generation for person re-identification[C]//Proceedings of the 15th European Conference on Computer Vision. Berlin, Germany:Springer, 2018:661-678. [3] LIU F Y, ZHANG L. View confusion feature learning for person re-identification[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C.,USA:IEEE Press, 2019:6639-6648. [4] ZHU Z H, JIANG X Y, ZHENG F, et al. Viewpoint-aware loss with angular regularization for person re-identification[J]. Artificial Intelligence, 2020, 34(7):13114-13121. [5] LU X Y, LI X D, SHENG W J, et al. Long-term person re-identification based on appearance and gait feature fusion under covariate changes[J]. Processes, 2022, 10(4):770. [6] HAN J, BHANU B. Individual recognition using gait energy image[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(2):316-322. [7] YU S Q, TAN D L, TAN T N. A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition[C]//Proceedings of the 18th International Conference on Pattern Recognition. New York, USA:ACM Press, 2006:441-444. [8] GRAY D, TAO H. Viewpoint invariant pedestrian recognition with an ensemble of localized features[C]//Proceedings of the 10th European Conference on Computer. Berlin, Germany:Springer, 2008:262-275. [9] FARENZENA M, BAZZANI L, PERINA A, et al. Person re-identification by symmetry-driven accumulation of local features[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2010:2360-2367. [10] KARANAM S, LI Y, RADKE R J. Person re-identification with discriminatively trained viewpoint invariant dictionaries[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Washington D. C.,USA:IEEE Press, 2015:4516-4524. [11] CHO Y J, YOON K J. Improving person re-identification via pose-aware multi-shot matching[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C.,USA:IEEE Press, 2016:1354-1362. [12] 杨永胜, 邓淼磊, 李磊, 等. 基于深度学习的行人重识别综述[J]. 计算机工程与应用, 2022, 58(9):51-66. YANG Y S, DENG M L, LI L, et al. Overview of pedestrian re-identification based on deep learning[J]. Computer Engineering and Applications, 2022, 58(9):51-66. (in Chinese) [13] ZHENG L, YANG Y, HAUPTMANN A G, et al. Person re-identification:past, present and future[EB/OL].[2023-04-01]. http://arxiv.org/abs/1610.02984v1. [14] YI D, LEI Z, LIAO S C, et al. Deep metric learning for person re-identification[C]//Proceedings of the 22nd International Conference on Pattern Recognition. Washington D. C.,USA:IEEE Press, 2014:34-39. [15] LI W, ZHAO R, XIAO T, et al. DeepReID:deep filter pairing neural network for person re-identification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C.,USA:IEEE Press, 2014:152-159. [16] ZHANG Z Z, LAN C L, ZENG W J, et al. Relation-aware global attention for person re-identification[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2020:3186-3195. [17] 董亚超, 刘宏哲, 徐成. 基于显著性多尺度特征协作融合的行人重识别方法[J]. 计算机工程, 2021, 47(6):234-244, 252. DONG Y C, LIU H Z, XU C. Person re-identification method based on joint fusion of saliency multi-scale features[J]. Computer Engineering, 2021, 47(6):234-244, 252.(in Chinese) [18] 曾涛, 薛峰, 杨添. 面向行人重识别的通道与空间双重注意力网络[J]. 计算机工程, 2022, 48(12):281-287, 295. ZENG T, XUE F, YANG T. Channel and spatial dual-attention network for person re-identification[J]. Computer Engineering, 2022, 48(12):281-287, 295.(in Chinese) [19] MCLAUGHLIN N, MARTINEZ DEL RINCON J, MILLER P. Recurrent convolutional network for video-based person re-identification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C.,USA:IEEE Press, 2016:1325-1334. [20] MENG J, ZHENG W S, LAI J H, et al. Deep graph metric learning for weakly supervised person re-identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(10):6074-6093. [21] SEPAS-MOGHADDAM A, ETEMAD A. Deep gait recognition:a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1):264-284. [22] YU S Q, LIAO R J, AN W Z, et al. GaitGANv2:invariant gait feature extraction using generative adversarial networks[J]. Pattern Recognition, 2019, 87:179-189. [23] WU Z F, HUANG Y Z, WANG L, et al. A comprehensive study on cross-view gait based human identification with deep CNNs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(2):209-226. [24] YU S Q, CHEN H F, REYES E B G, et al. GaitGAN:invariant gait feature extraction using generative adversarial networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops. Washington D. C., USA:IEEE Press, 2017:30-37. [25] WANG Y Y, SONG C F, HUANG Y, et al. Learning view invariant gait features with two-stream GAN[J]. Neurocomputing, 2019, 339:245-254. [26] WU A C, ZHENG W S, YU H X, et al. RGB-infrared cross-modality person re-identification[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C.,USA:IEEE Press, 2017:5390-5399. [27] WAN L, SUN Z Y, JING Q Y, et al. G2DA:geometry-guided dual-alignment learning for RGB-infrared person re-identification[J]. Pattern Recognition, 2023, 135:109150. [28] WU A C, ZHENG W S, LAI J H. Robust depth-based person re-identification[J]. IEEE Transactions on Image Processing, 2017, 26(6):2588-2603. [29] LI S, XIAO T, LI H S, et al. Person search with natural language description[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2017:5187-5196. [30] CHEN D P, LI H S, LIU X H, et al. Improving deep visual representation for person re-identification by global and local image-language association[M]. Berlin, Germany:Springer, 2018:56-73. [31] LIU J W, ZHA Z J, HONG R C, et al. Deep adversarial graph attention convolution network for text-based person search[C]//Proceedings of the 27th ACM International Conference on Multimedia. New York, USA:ACM Press, 2019:665-673. [32] LI S Q, ZHANG M, LIU W, et al. Appearance and gait-based progressive person re-identification for surveillance systems[C]//Proceedings of the 4th IEEE International Conference on Multimedia Big Data. Washington D. C., USA:IEEE Press, 2018:1-7. [33] GAO J Y, NEVATIA R, LIAO X Y, et al. Revisiting temporal modeling for video-based person ReID[EB/OL].[2023-04-01]. http://arxiv.org/abs/1805.02104v2. [34] KIPF T N, WELLING M. Variational graph auto-encoders[EB/OL].[2023-04-01]. http://arxiv.org/abs/1611.07308v1. [35] CHAO H Q, HE Y W, ZHANG J P, et al. GaitSet:regarding gait as a set for cross-view gait recognition[J]. Artificial Intelligence, 2019, 33(1):8126-8133. [36] DAI Y M, GIESEKE F, OEHMCKE S, et al. Attentional feature fusion[C]//Proceedings of IEEE Winter Conference on Applications of Computer Vision. Waikoloa, USA:IEEE Press, 2021:3560-3569. [37] MOGAN J N, LEE C P, LIM K M, et al. VGG16-MLP:gait recognition with fine-tuned VGG-16 and multilayer perceptron[J]. Applied Sciences, 2022, 12(15):7639. [38] LIAO R J, LI Z, BHATTACHARYYA S S, et al. PoseMapGait:a model-based gait recognition method with pose estimation maps and graph convolutional networks[J]. Neurocomputing, 2022, 501:514-528. [39] WANG L K, CHEN J Y, LIU Y X. Frame-level refinement networks for skeleton-based gait recognition[J]. Computer Vision and Image Understanding, 2022, 222:103500. |