1 |
程章桃, 钟婷, 张晟铭, 等. 基于图学习的推荐系统研究综述. 计算机科学, 2022, 49 (9): 1- 13.
|
|
CHENG Z T , ZHONG T , ZHANG S M , et al. Survey of recommender systems based on graph learning. Computer Science, 2022, 49 (9): 1- 13.
|
2 |
HASAN M, ZAKI M J. A survey of link prediction in social networks[M]//Social Network Data Analytics. Berlin, Germany: Springer, 2011: 243-275.
|
3 |
王兆慧, 沈华伟, 曹婍, 等. 图分类研究综述. 软件学报, 2022, 33 (1): 171- 192.
|
|
WANG Z H , SHEN H W , CAO Q , et al. Survey on graph classification. Journal of Software, 2022, 33 (1): 171- 192.
|
4 |
|
5 |
|
6 |
马涪元, 王英, 李丽娜, 等. 融合结构和特征的图层次化池化模型. 计算机科学与探索, 2023, 17 (1): 179- 186.
|
|
MA F Y , WANG Y , LI L N , et al. Structure and feature fusion graph hierarchical pooling model. Journal of Frontiers of Computer Science and Technology, 2023, 17 (1): 179- 186.
|
7 |
YING R, YOU J X, MORRIS C, et al. Hierarchical graph representation learning with differentiable pooling[EB/OL]. [2023-08-01]. https://arxiv.org/pdf/1806.08804.
|
8 |
徐立祥, 葛伟, 陈恩红, 等. 基于图核同构网络的图分类方法. 计算机研究与发展, 2024, 61 (4): 903- 915.
|
|
XU L X , GE W , CHEN E H , et al. Graph classification method based on graph kernel isomorphism network. Journal of Computer Research and Development, 2024, 61 (4): 903- 915.
|
9 |
|
10 |
HUANG J J, LI Z H, LI N N, et al. AttPool: towards hierarchical feature representation in graph convolutional networks via attention mechanism[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D. C., USA: IEEE Press, 2019: 6479-6488.
|
11 |
GAO X , DAI W R , LI C L , et al. iPool—information-based pooling in hierarchical graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33 (9): 5032- 5044.
doi: 10.1109/TNNLS.2021.3067441
|
12 |
|
13 |
DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fastlocalized spectral filtering[EB/OL]. [2023-08-01]. https://arxiv.org/pdf/1606.09375.
|
14 |
|
15 |
|
16 |
|
17 |
DU J L, WANG S Z, MIAO H, et al. Multi-channel pooling graph neural networks[C]//Proceedings of the 13th International Joint Conference on Artificial Intelligence. Montreal, Canada: International Joint Conferences on Artificial Intelligence Organization, 2021: 1442-1448.
|
18 |
|
19 |
SHI X J, CHEN Z R, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2015: 802-810.
|
20 |
ZHANG M H, CUI Z C, NEUMANN M, et al. An end-to-end deep learning architecture for graph classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence. [S. l.]: AAAI Press, 2018: 4438-4445.
|
21 |
MA Y, WANG S H, AGGARWAL C C, et al. Graph convolutional networks with eigenpooling[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2019: 723-731.
|
22 |
|
23 |
DOBSON P D , DOIG A J . Distinguishing enzyme structures from non-enzymes without alignments. Journal of Molecular Biology, 2003, 330 (4): 771- 783.
doi: 10.1016/S0022-2836(03)00628-4
|
24 |
BORGWARDT K M, ONG C S, SCHÖNAUER S, et al. Protein function prediction via graph kernels[C]//Proceedings the 13th International Conference on Intelligent Systems for Molecular Biology. New York, USA: ACM Press, 2005: 47-56.
|
25 |
WEI L N, HE Z Q, ZHAO H, et al. Search to capture long-range dependency with stacking GNNs for graph classification[C]//Proceedings of the ACM Web Conference. New York, USA: ACM Press, 2023: 588-598.
|
26 |
DUAN Y T , WANG J M , MA H R , et al. Residual convolutional graph neural network with subgraph attention pooling. Tsinghua Science and Technology, 2022, 27 (4): 653- 663.
doi: 10.26599/TST.2021.9010058
|