1 |
张鋆, 王继业, 宋睿, 等. 基于边缘智能的输电线路异常目标高效检测方法研究. 电网技术, 2022, 46 (5): 1652- 1661.
|
|
ZHANG J , WANG J Y , SONG R , et al. Research on efficient detection technology of transmission line abnormal target based on edge intelligence. Power System Technology, 2022, 46 (5): 1652- 1661.
|
2 |
莫梓嘉, 高志鹏, 苗东. 边缘智能: 人工智能向边缘分布式拓展的新触角. 数据与计算发展前沿, 2020, 2 (4): 16- 27.
|
|
MO Z J , GAO Z P , MIAO D . Edge intelligence: a new extension for artificial intelligence expanding to edge. Frontiers of Data and Computing, 2020, 2 (4): 16- 27.
|
3 |
焦飞, 宋睿, 张鋆, 等. 存算一体技术研究进展及其在电网中的应用探索. 电网技术, 2024, 48 (1): 300- 314.
|
|
JIAO F , SONG R , ZHANG J , et al. Development of computing in-memory technology and its potential implementation in power grid. Power System Technology, 2024, 48 (1): 300- 314.
|
4 |
ATMAJA P, MAULANA D I, ADIONO T. AI-based customer behavior analytics system using edge computing device[C]//Proceedings of International Conference on Electronics, Information, and Communication (ICEIC). Washington D. C., USA: IEEE Press, 2020: 1-2.
|
5 |
LEE Y, KIM W, MOON K, et al. A mobile edge computing device to support data collecting and processing from IoT[C]//Proceedings of the International Conference on Electronics, Information, and Communication (ICEIC). Washington D. C., USA: IEEE Press, 2019: 1-3.
|
6 |
强亚东. 基于ARM7核的SoC芯片软硬件协同验证[D]. 兰州: 西北工业大学, 2008.
|
|
QIANG Y D. Software and hardware co-verification of SoC chip based on ARM7 core[D]. Lanzhou: Northwestern Polytechnical University, 2008. (in Chinese)
|
7 |
郭昕婕, 王绍迪. 端侧智能存算一体芯片概述. 微纳电子与智能制造, 2019, 1 (2): 72- 82.
|
|
GUO X J , WANG S D . Overview of edge intelligent computing-in-memory chips. Micro/Nano Electronics and Intelligent Manufacturing, 2019, 1 (2): 72- 82.
|
8 |
余运俊, 张鹏飞, 龚汉城, 等. 面向边缘计算的轻量级网络硬件加速设计. 计算机科学, 2023, 50 (S2): 832- 838.
|
|
YU Y J , ZHANG P F , GONG H C , et al. Lightweight network hardware acceleration design for edge computing. Computer Science, 2023, 50 (S2): 832- 838.
|
9 |
阳王东, 王昊天, 张宇峰, 等. 异构混合并行计算综述. 计算机科学, 2020, 47 (9): 5- 16.
|
|
YANG W D , WANG H T , ZHANG Y F , et al. Survey of heterogeneous hybrid parallel computing. Computer Science, 2020, 47 (9): 5- 16.
|
10 |
NURVITADHI E, SHEFFIELD D, SIM J, et al. Accelerating binarized neural networks: comparison of FPGA, CPU, GPU, and ASIC[C]// Proceedings of the International Conference on Field-Programmable Technology (FPT). Washington D. C., USA: IEEE Press, 2016: 11-17.
|
11 |
GUO K Y , SUI L Z , QIU J T , et al. Angel-eye: a complete design flow for mapping CNN onto embedded FPGA. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37 (1): 35- 47.
doi: 10.1109/TCAD.2017.2705069
|
12 |
YU J C , GE G J , HU Y M , et al. Instruction driven cross-layer CNN accelerator for fast detection on FPGA. ACM Transactions on Reconfigurable Technology and Systems, 2018, 11 (3): 1- 23.
URL
|
13 |
WEN J Y, MA Y F, WANG Z F. An efficient FPGA accelerator optimized for high throughput sparse CNN inference[C]// Proceedings of the IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). Washington D. C., USA: IEEE Press, 2020: 136-143.
|
14 |
PISHARODY J N, PRANAV K B, RANJITHA M, et al. FPGA implementation and acceleration of convolutional neural networks[C]//Proceedings of the 6th International Conference for Convergence in Technology (I2CT). Washington D. C., USA: IEEE Press, 2021: 74-81.
|
15 |
王昆. 深度学习中的卷积神经网络硬件加速系统设计研究[D]. 贵阳: 贵州大学, 2019.
|
|
WANG K. Research on the design of hardware acceleration system for convolutional neural networks in deep learning[D]. Guiyang: Guizhou University, 2019. (in Chinese)
|
16 |
王磊, 赵英海, 杨国顺, 等. 面向嵌入式应用的深度神经网络模型压缩技术综述. 北京交通大学学报, 2017, 41 (6): 34- 41.
|
|
WANG L , ZHAO Y H , YANG G S , et al. A survey of model compression of deep neural network for embedded system. Journal of Beijing Jiaotong University, 2017, 41 (6): 34- 41.
|
17 |
ZHOU Z , CHEN X , LI E , et al. Edge intelligence: paving the last mile of artificial intelligence with edge computing. Proceedings of the IEEE, 2019, 107, 1738- 1762.
doi: 10.1109/JPROC.2019.2918951
|
18 |
CHI Z, PRASANNA V. Frequency domain acceleration of convolutional neural networks on CPU-FPGA shared memory system[C]// Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. New York, USA: ACM Press, 2017: 35-44.
|
19 |
郝帅, 马瑞泽, 赵新生, 等. 基于卷积块注意模型的YOLOv3输电线路故障检测方法. 电网技术, 2021, 45 (8): 2979- 2987.
|
|
HAO S , MA R Z , ZHAO X S , et al. Fault detection of YOLOv3 transmission line based on convolutional block attention model. Power System Technology, 2021, 45 (8): 2979- 2987.
|
20 |
ZHANG C, LI P, SUN G Y, et al. Optimizing FPGA-based accelerator design for deep convolutional neural networks[C]//Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. New York, USA: ACM Press, 2015: 161-170.
|
21 |
WATERMAN A, LEE Y, PATTERSON D, et al. The RISC-V instruction set manual, volume Ⅰ: user-level ISA, version2.1[R]. Berkeley, CA: University of California, 2016.
|
22 |
ZHANG S , WANG J , LIU H , et al. Prediction of energy photovoltaic power generation based on artificial intelligence algorithm. Neural Computing and Applications, 2021, 33, 821- 835.
doi: 10.1007/s00521-020-05249-z
|
23 |
张树华, 王继业, 王辰, 等. 基于分层模糊神经网络的边缘侧光伏发电能量预测. 现代电力, 2024, 41 (3): 490- 499.
|
|
ZHANG S H , WANG J Y , WANG C , et al. Energy prediction of edge-side photovoltaic power generation based on hierarchical fuzzy neural network. Modern Electric Power, 2024, 41 (3): 490- 499.
|