| 1 |
崔丽群, 曹华维. 基于改进YOLOv5的遥感图像目标检测. 计算机工程, 2024, 50 (4): 228- 236.
doi: 10.19678/j.issn.1000-3428.0067790
|
|
CUI L Q , CAO H W . Target detection of remote-sensing images based on improved YOLOv5. Computer Engineering, 2024, 50 (4): 228- 236.
doi: 10.19678/j.issn.1000-3428.0067790
|
| 2 |
姚志远, 桑国明, 张益嘉. 结合多尺度特征增强与记忆引导Transformer的遥感图像描述算法. 小型微型计算机系统, 2025, 46 (8): 1978- 1985.
|
|
YAO Z Y , SANG G M , ZHANG Y J . Remote sensing image captioning based on multiscale feature enhancement and memory-guided Transformer. Journal of Chinese Computer Systems, 2025, 46 (8): 1978- 1985.
|
| 3 |
苗茹, 李祎, 周珂, 等. 一种改进的Faster R-CNN遥感图像多目标检测模型研究. 计算机工程, 2025, 51 (8): 292- 304.
doi: 10.19678/j.issn.1000-3428.0068856
|
|
MIAO R , LI Y , ZHOU K , et al. A study on improved Faster R-CNN model for multi-object detection in remote sensing images. Computer Engineering, 2025, 51 (8): 292- 304.
doi: 10.19678/j.issn.1000-3428.0068856
|
| 4 |
WANG X , DUAN L , NING C . Global context-based multilevel feature fusion networks for multilabel remote sensing image scene classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 11179- 11196.
doi: 10.1109/JSTARS.2021.3122464
|
| 5 |
LI Y S , CHEN R X , ZHANG Y J , et al. Multi-label remote sensing image scene classification by combining a convolutional neural network and a graph neural network. Remote Sensing, 2020, 12 (23): 4003.
doi: 10.3390/rs12234003
|
| 6 |
ALSHEHRI A , BAZI Y , AMMOUR N , et al. Deep attention neural network for multi-label classification in unmanned aerial vehicle imagery. IEEE Access, 2019, 7, 119873- 119880.
doi: 10.1109/ACCESS.2019.2936616
|
| 7 |
JI J C , JING W P , CHEN G S , et al. Multi-label remote sensing image classification with latent semantic dependencies. Remote Sensing, 2020, 12 (7): 1110.
doi: 10.3390/rs12071110
|
| 8 |
SUMBUL G , DEMIR B . A deep multi-attention driven approach for multi-label remote sensing image classification. IEEE Access, 2020, 8, 95934- 95946.
doi: 10.1109/ACCESS.2020.2995805
|
| 9 |
CHEN Z M, WEI X S, WANG P, et al. Multi-label image recognition with graph convolutional networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 5172-5181.
|
| 10 |
LIU Y K , NI K S , ZHANG Y H , et al. Semantic interleaving global channel attention for multilabel remote sensing image classification. International Journal of Remote Sensing, 2024, 45 (2): 393- 419.
doi: 10.1080/01431161.2023.2297175
|
| 11 |
HUANG R , ZHENG F C , HUANG W . Multilabel remote sensing image annotation with multiscale attention and label correlation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 6951- 6961.
doi: 10.1109/JSTARS.2021.3091134
|
| 12 |
YI K, WU J X. Probabilistic end-to-end noise correction for learning with noisy labels[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 7010-7018.
|
| 13 |
XIE M K , HUANG S J . Partial multi-label learning. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32 (1): 2159- 2165.
|
| 14 |
ZHANG M L , FANG J P . Partial multi-label learning via credible label elicitation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (10): 3587- 3599.
doi: 10.1109/TPAMI.2020.2985210
|
| 15 |
SUN L J , FENG S H , WANG T , et al. Partial multi-label learning by low-rank and sparse decomposition. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33 (1): 5016- 5023.
doi: 10.1609/aaai.v33i01.33015016
|
| 16 |
CHEN T S , PU T , WU H F , et al. Structured semantic transfer for multi-label recognition with partial labels. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36 (1): 339- 346.
doi: 10.1609/aaai.v36i1.19910
|
| 17 |
BEN-BARUCH E, RIDNIK T, FRIEDMAN I, et al. Multi-label classification with partial annotations using class-aware selective loss[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 4754-4762.
|
| 18 |
BUCAK S S, JIN R, JAIN A K. Multi-label learning with incomplete class assignments[C]//Proceedings of the CVPR 2011. Washington D.C., USA: IEEE Press, 2011: 2801-2808.
|
| 19 |
LIN J Z , YU T Z , WANG Z J . Rethinking crowdsourcing annotation: partial annotation with salient labels for multilabel aerial image classification. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 15- 23.
|
| 20 |
LAI H R, YAO Q S, HE Z Y, et al. Long-tailed multi-label classification with noisy label of thoracic diseases from chest X-ray[C]//Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI). Washington D.C., USA: IEEE Press, 2024: 1-5.
|
| 21 |
LIANG C , YANG Z X , ZHU L C , et al. Co-learning meets stitch-up for noisy multi-label visual recognition. IEEE Transactions on Image Processing, 2023, 32, 2508- 2519.
doi: 10.1109/TIP.2023.3270103
|
| 22 |
SHU J , XIE Q , YI L , et al. Meta-weight-net: learning an explicit mapping for sample weighting. Advances in Neural Information Processing Systems, 2019, 172 (32): 1919- 1930.
|
| 23 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 770-778.
|
| 24 |
CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]//Proceedings of the 37th International Conference on Machine Learning. Washington D.C., USA: IEEE Press, 2020: 1597-1607.
|
| 25 |
|
| 26 |
HUA Y S , MOU L C , ZHU X X . Relation network for multilabel aerial image classification. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58 (7): 4558- 4572.
doi: 10.1109/TGRS.2019.2963364
|
| 27 |
CHAUDHURI B , DEMIR B , CHAUDHURI S , et al. Multilabel remote sensing image retrieval using a semisupervised graph-theoretic method. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56 (2): 1144- 1158.
doi: 10.1109/TGRS.2017.2760909
|
| 28 |
HUA Y S, MOU L C, ZHU X X. Label relation inference for multi-label aerial image classification[C]//Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium. Washington D.C., USA: IEEE Press, 2019: 5244-5247.
|