| 1 |
YANG Z J, XIE L X, ZHOU W, et al. VoxSeP: semi-positive voxels assist self-supervised 3D medical segmentation. Multimedia Systems, 2023, 29(1): 33- 48.
doi: 10.1007/s00530-022-00977-9
|
| 2 |
NARAYAN V, FAIZ M, MALL P K, et al. A comprehensive review of various approach for medical image segmentation and disease prediction. Wireless Personal Communications, 2023, 132(3): 1819- 1848.
doi: 10.1007/s11277-023-10682-z
|
| 3 |
ISAKSSON L J, SUMMERS P, MASTROLEO F, et al. Automatic segmentation with deep learning in radiotherapy. Cancers, 2023, 15(17): 4389.
doi: 10.3390/cancers15174389
|
| 4 |
LIANG B T, TANG C, ZHANG W, et al. N-Net: an UNet architecture with dual encoder for medical image segmentation. Signal, Image and Video Processing, 2023, 17(6): 3073- 3081.
doi: 10.1007/s11760-023-02528-9
|
| 5 |
BOUGOURZI F, DISTANTE C, DORNAIKA F, et al. PDAtt-Unet: pyramid dual-decoder attention Unet for COVID-19 infection segmentation from CT-scans. Medical Image Analysis, 2023, 86, 102797.
doi: 10.1016/j.media.2023.102797
|
| 6 |
WU H S, ZHAO Z B, WANG Z Z. META-Unet: multi-scale efficient Transformer attention unet for fast and high-accuracy polyp segmentation. IEEE Transactions on Automation Science and Engineering, 2024, 21(3): 4117- 4128.
doi: 10.1109/TASE.2023.3292373
|
| 7 |
VALANARASU J M J, PATEL V M. UNeXt: MLP-based rapid medical image segmentation network. Berlin, Germany: Springer, 2022: 23- 33.
|
| 8 |
HAN W Z, ZHANG Y T, ZHAO Y C, et al. 3D U-Net3 based microbubble filtering for ultrasound localization microscopy[C]//Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC). Washington D.C., USA: IEEE Press, 2023: 3974-3979.
|
| 9 |
LIN A L, CHEN B Z, XU J Y, et al. DS-TransUNet: dual swin Transformer U-Net for medical image segmentation. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 4005615.
|
| 10 |
CAO H, WANG Y Y, CHEN J, et al. Swin-Unet: Unet-like pure Transformer for medical image segmentation. Belrin, Germany: Springer, 2023.
|
| 11 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 6000-6010.
|
| 12 |
XIE E Z, WANG W H, YU Z D, et al. SegFormer: simple and efficient design for semantic segmentation with Transformers. Advances in Neural Information Processing Systems, 2021, 34, 12077- 12090.
|
| 13 |
HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2019: 1314-1324.
|
| 14 |
CHAVAN A, SHEN Z Q, LIU Z, et al. Vision Transformer slimming: multi-dimension searching in continuous optimization space[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 4921-4931.
|
| 15 |
ZAGORUYKO S, KOMODAKIS N. Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer[EB/OL]. [2024-03-11]. https://doi.org/10.48550/arXiv.1612.03928.
|
| 16 |
张帆, 黄赟, 方子茁, 等. 卷积神经网络的损失最小训练后参数量化方法. 通信学报, 2022, 43(4): 114- 122.
|
|
ZHANG F, HUANG Y, FANG Z Z, et al. Lost-minimum post-training parameter quantization method for convolutional neural network. Journal on Communications, 2022, 43(4): 114- 122.
|
| 17 |
GHOLAMI A, KWON K, WU B C, et al. SqueezeNext: hardware-aware neural network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Washington D.C., USA: IEEE Press, 2018: 1719-171909.
|
| 18 |
王宪保, 刘鹏飞, 项圣, 等. 基于神经架构搜索的非结构化剪枝方法. 模式识别与人工智能, 2023, 36(5): 448- 458.
|
|
WANG X B, LIU P F, XIANG S, et al. Unstructured pruning method based on neural architecture search. Pattern Recognition and Artificial Intelligence, 2023, 36(5): 448- 458.
|
| 19 |
李屹, 魏建国, 刘贯伟. 模型剪枝算法综述. 计算机与现代化, 2022(9): 51- 59.
|
|
LI Y, WEI J G, LIU G W. Survey of model pruning algorithms. Computer and Modernization, 2022(9): 51- 59.
|
| 20 |
|
| 21 |
HE Y, LIU P, WANG Z W, et al. Filter pruning via geometric Median for deep convolutional neural networks acceleration[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 1-15.
|
| 22 |
LIU Z, LI J G, SHEN Z Q, et al. Learning efficient convolutional networks through network slimming[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2017: 2755-2763.
|
| 23 |
|
| 24 |
ZHENG S X, LU J C, ZHAO H S, et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with Transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 6877-6886.
|