[1] 王岳含, 曾军山.快递业自赋能现状及发展方向[J].中国国情国力, 2020(1):56-60. WANG Y H, ZENG J S.The status and development direction of self-empowerment in express delivery industry[J].China National Conditions and Strength, 2020(1):56-60.(in Chinese) [2] WU F, WU L X.DeepETA:a spatial-temporal sequential neural network model for estimating time of arrival in package delivery system[J].Artificial Intelligence, 2019, 33(1):774-781. [3] ULMER M W, THOMAS B W.Enough waiting for the cable guy-estimating arrival times for service vehicle routing[J].Transportation Science, 2019, 53(3):897-916. [4] 闫皎洁, 张锲石, 胡希平.基于强化学习的路径规划技术综述[J].计算机工程, 2021, 47(10):16-25. YAN J J, ZHANG Q S, HU X P.Review of path planning techniques based on reinforcement learning[J].Computer Engineering, 2021, 47(10):16-25.(in Chinese) [5] HONG H T, LIN Y C, YANG X Q, et al.HetETA:heterogeneous information network embedding for estimating time of arrival[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2020:2444-2454. [6] SUN Y W, WANG Y L, FU K, et al.FMA-ETA:estimating travel time entirely based on FFN with attention[EB/OL].[2021-02-10].https://arxiv.org/abs/2006.04077v1. [7] LECUN Y, BENGIO Y, HINTON G.Deep learning[J].Nature, 2015, 521(7553):436-444. [8] HOCHREITER S, SCHMIDHUBER J.Long short-term memory[J].Neural Computation, 1997, 9(8):1735-1780. [9] PARK C, LEE C, BAHNG H, et al.STGRAT:a spatio-temporal graph attention network for traffic forecasting[EB/OL].[2021-02-10].https://arxiv.org/abs/1911.13181v2. [10] YAO H X, TANG X F, WEI H, et al.Revisiting spatial-temporal similarity:a deep learning framework for traffic prediction[J].Artificial Intelligence, 2019, 33(1):5668-5675. [11] LI K, YAN X J, TAN X H, et al.Predicting taxi demand based on 3d convolutional neural network and multi-task learning[J].Remote Sensing, 2019, 11(11):1265. [12] WANG Z, FU K, YE J P.Learning to estimate the travel time[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2018:858-866. [13] LEE W C, SI W P, CHEN L J, et al.HTTP:a new framework for bus travel time prediction based on historical trajectories[C]//Proceedings of ACM International Symposium on Advances in Geographic Information Systems.New York, USA:ACM Press, 2012:279-288. [14] WENG J C, WANG C, HUANG H N, et al.Real-time bus travel speed estimation model based on bus GPS data[J].Advances in Mechanical Engineering, 2016, 8(11):1687-1697. [15] WANG Y L, ZHENG Y, XUE Y X.Travel time estimation of a path using sparse trajectories[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2014:25-34. [16] ZHANG H Y, WU H, SUN W W, et al.DeepTravel:a neural network based travel time estimation model with auxiliary supervision[C]//Proceedings of the 27th IEEE International Joint Conference on Artificial Intelligence.Washington D.C., USA:IEEE Press, 2018:3245-3256. [17] SCHUSTER M, PALIWAL K K.Bidirectional recurrent neural networks[J].IEEE Transactions on Signal Processing, 1997, 45(11):2673-2681. [18] WANG D, ZHANG J B, CAO W, et al.When will you arrive?Estimating travel time based on deep neural networks[C]//Proceedings of AAAI Conference on Artificial Intelligence.[S.1.]:AAAI Press, 2018:2366-2378. [19] LI Y G, FU K, WANG Z, et al.Multi-task representation learning for travel time estimation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2018:1695-1704. [20] GAL Y, GHAHRAMANI Z.A theoretically grounded application of dropout in recurrent neural networks[EB/OL].[2021-02-10].https://arxiv.org/pdf/1512.05287.pdf. [21] ZHANG J B, ZHENG Y, QI D K, et al.DNN-based prediction model for spatio-temporal data[C]//Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.New York, USA:ACM Press, 2016:1-4. |