| 1 | PALAKKAL S, PRABHU K M M. Poisson image denoising using fast discrete curvelet transform and wave atom. Signal Processing, 2012, 92(9): 2002- 2017.  doi: 10.1016/j.sigpro.2012.01.008
 | 
																													
																							| 2 | GUPTA V, CHAN C C, SIAN P T. A differential evolution approach to PET image de-noising[C]//Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Washington D. C. , USA: IEEE Press, 2007: 4173-4176. | 
																													
																							| 3 | BEVILACQUA F, LANZA A, PRAGLIOLA M, et al. Nearly exact discrepancy principle for low-count Poisson image restoration. Journal of Imaging, 2021, 8(1): 1.  doi: 10.3390/jimaging8010001
 | 
																													
																							| 4 | ZHAO M C, WEN Y W, NG M, et al. A nonlocal low rank model for Poisson noise removal. Inverse Problems & Imaging, 2021, 15(3): 519. | 
																													
																							| 5 | ANSCOMBE F J. The transformation of Poisson, binomial and negative-binomial data. Biometrika, 1948, 35(3/4): 246- 254.  doi: 10.2307/2332343
 | 
																													
																							| 6 | FISZ M. The limiting distribution of a function of two independent random variables and its statistical application. Colloquium Mathematicum, 1955, 3(2): 138- 146.  doi: 10.4064/cm-3-2-138-146
 | 
																													
																							| 7 | MÄKITALO M, FOI A. Optimal inversion of the Anscombe transformation in low-count Poisson image denoising. IEEE Transactions on Image Processing, 2011, 20(1): 99- 109.  doi: 10.1109/TIP.2010.2056693
 | 
																													
																							| 8 | AZZARI L, FOI A. Variance stabilization for noisy+estimate combination in iterative Poisson denoising. IEEE Signal Processing Letters, 2016, 23(8): 1086- 1090.  doi: 10.1109/LSP.2016.2580600
 | 
																													
																							| 9 | JIN Q Y, GRAMA I, LIU Q S. Poisson shot noise removal by an oracular non-local algorithm. Journal of Mathematical Imaging and Vision, 2021, 63(7): 855- 874.  doi: 10.1007/s10851-021-01033-3
 | 
																													
																							| 10 | SALMON J, HARMANY Z, DELEDALLE C A, et al. Poisson noise reduction with non-local PCA. Journal of Mathematical Imaging and Vision, 2014, 48(2): 279- 294.  doi: 10.1007/s10851-013-0435-6
 | 
																													
																							| 11 | LE T, CHARTRAND R, ASAKI T J. A variational approach to reconstructing images corrupted by Poisson noise. Journal of Mathematical Imaging and Vision, 2007, 27(3): 257- 263.  doi: 10.1007/s10851-007-0652-y
 | 
																													
																							| 12 | LÜ Y H, LIU X W. Box constrained total generalized variation model and primal-dual algorithm for Poisson noise removal. Journal of Pseudo-Differential Operators and Applications, 2020, 11(3): 1421- 1444.  doi: 10.1007/s11868-019-00317-y
 | 
																													
																							| 13 | 张峥嵘, 刘红毅, 韦志辉. 欧拉弹性正则化的图像泊松去噪. 电子学报, 2017, 45(1): 181- 191. | 
																													
																							|  | ZHANG Z R, LIU H Y, WEI Z H. Image Poisson denoising based on Euler's elastica regularization. Acta Electronica Sinica, 2017, 45(1): 181- 191. | 
																													
																							| 14 | CHOWDHURY M R, ZHANG J, QIN J, et al. Poisson image denoising based on fractional-order total variation. Inverse Problems & Imaging, 2020, 14(1): 77- 96. | 
																													
																							| 15 | CHEN Y J, POCK T. Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1256- 1272.  doi: 10.1109/TPAMI.2016.2596743
 | 
																													
																							| 16 | ZHANG K, ZUO W M, CHEN Y J, et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Transactions on Image Processing, 2017, 26(7): 3142- 3155.  doi: 10.1109/TIP.2017.2662206
 | 
																													
																							| 17 | KUMWILAISAK W, PIRIYATHARAWET T, LASANG P, et al. Image denoising with deep convolutional neural and multi-directional long short-term memory networks under Poisson noise environments. IEEE Access, 2020, 8, 86998- 87010.  doi: 10.1109/ACCESS.2020.2991988
 | 
																													
																							| 18 | ZHANG K, ZUO W M, ZHANG L. FFDNet: toward a fast and flexible solution for CNN-based image denoising. IEEE Transactions on Image Processing, 2018, 27(9): 4608- 4622.  doi: 10.1109/TIP.2018.2839891
 | 
																													
																							| 19 | REMEZ T, LITANY O, GIRYES R, et al. Class-aware fully convolutional Gaussian and Poisson denoising. IEEE Transactions on Image Processing, 2018, 27(11): 5707- 5722.  doi: 10.1109/TIP.2018.2859044
 | 
																													
																							| 20 | DUTTA S, BASARAB A, GEORGEOT B, et al. Plug-and-play quantum adaptive denoiser for deconvolving Poisson noisy images. IEEE Access, 2021, 9, 139771- 139791.  doi: 10.1109/ACCESS.2021.3118608
 | 
																													
																							| 21 | ZHANG K, LI Y W, ZUO W M, et al. Plug-and-play image restoration with deep denoiser prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(10): 6360- 6376.  doi: 10.1109/TPAMI.2021.3088914
 | 
																													
																							| 22 | ZHA Z Y, WEN B H, YUAN X, et al. Simultaneous nonlocal low-rank and deep priors for Poisson denoising[C]//Proceedings of 2022 IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C. , USA: IEEE Press, 2022: 2320-2324. | 
																													
																							| 23 | WANG G D, PAN Z K, ZHANG Z M. Deep CNN denoiser prior for multiplicative noise removal. Multimedia Tools and Applications, 2019, 78(20): 29007- 29019.  doi: 10.1007/s11042-018-6294-9
 | 
																													
																							| 24 | FENG W S, QIAO P, CHEN Y J, et al. Fast and accurate Poisson denoising with trainable nonlinear diffusion. IEEE Transactions on Cybernetics, 2018, 48(6): 1708- 1719.  doi: 10.1109/TCYB.2017.2713421
 | 
																													
																							| 25 | BOYD S. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 2010, 3(1): 1- 122.  doi: 10.1561/2200000016
 | 
																													
																							| 26 | DONG W S, WANG P Y, YIN W T, et al. Denoising prior driven deep neural network for image restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(10): 2305- 2318.  doi: 10.1109/TPAMI.2018.2873610
 | 
																													
																							| 27 | MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings of the 8th IEEE International Conference on Computer Vision. Washington D. C. , USA: IEEE Press, 2001: 416-423. | 
																													
																							| 28 | ARBELÁEZ P, MAIRE M, FOWLKES C, et al. Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898- 916.  doi: 10.1109/TPAMI.2010.161
 |