1 |
何畅. 基于智能优化算法的多无人机联合搜救路径规划与通信覆盖研究[D]. 广州: 广州大学, 2024.
|
|
HE C. Research on path planning and communication coverage of multi-UAV joint search and rescue based on intelligent optimization algorithm[D]. Guangzhou: Guangzhou University, 2024. (in Chinese)
|
2 |
苏立晨, 赵浩然, 郭通, 等. 基于动态分治的大规模多场站无人机应急救援优化方法. 北京邮电大学学报, 2024, 47 (1): 65- 71.
|
|
SU L C , ZHAO H R , GUO T , et al. Optimization method for large-scale multi-site unmanned aerial vehicle emergency rescue based on dynamic divide-and-conquer strategy. Journal of Beijing University of Posts and Telecommunications, 2024, 47 (1): 65- 71.
|
3 |
寇昆湖, 王雅平, 尚在飞. 对海作战无人机指挥控制系统及协同模式研究. 火力与指挥控制, 2024, 49 (6): 68- 74.
|
|
KOU K H , WANG Y P , SHANG Z F . Research on command and control system and cooperative mode of UAVs for sea operations. Fire Control & Command Control, 2024, 49 (6): 68- 74.
|
4 |
DESAI J P, OSTROWSKI J, KUMAR V. Controlling formations of multiple mobile robots[C]// Proceedings of the 15th IEEE International Conference on Robotics and Automation. Washington D. C., USA: IEEE Press, 1998: 2864-2869.
|
5 |
彭建帅, 付兴建. 仿雁群行为的领航-跟随无人机编队控制. 控制工程, 2023, 30 (1): 113- 118.
|
|
PENG J S , FU X J . Formation control of leader-follower UAV based on the behavior of geese swarm. Control Engineering of China, 2023, 30 (1): 113- 118.
|
6 |
冯一飞. 基于行为法的分布式无人机集群控制方法与仿真研究[D]. 长春: 吉林大学, 2023.
|
|
FENG Y F. Research on control method and simulation of distributed UAV cluster based on behavior method[D]. Changchun: Jilin University, 2023. (in Chinese)
|
7 |
李正平, 鲜斌. 基于虚拟结构法的分布式多无人机鲁棒编队控制. 控制理论与应用, 2020, 37 (11): 2423- 2431.
|
|
LI Z P , XIAN B . Robust distributed formation control of multiple unmanned aerial vehicles based on virtual structure. Control Theory & Applications, 2020, 37 (11): 2423- 2431.
|
8 |
OLFATI-SABER R , MURRAY R M . Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 2004, 49 (9): 1520- 1533.
doi: 10.1109/TAC.2004.834113
|
9 |
于跃飞, 林国怀, 郭子杰, 等. 基于固定时间的多无人机系统自适应姿态控制. 聊城大学学报(自然科学版), 2023, 36 (1): 11- 23.
|
|
YU Y F , LIN G H , GUO Z J , et al. Fixed-time-based adaptive attitude control for multi-UAV systems. Journal of Liaocheng University (Natural Science Edition), 2023, 36 (1): 11- 23.
|
10 |
HUANG Z B , SUN S L , ZHAO J , et al. Multi-modal policy fusion for end-to-end autonomous driving. Information Fusion, 2023, 98, 101834.
doi: 10.1016/j.inffus.2023.101834
|
11 |
何逸煦, 林泓熠, 刘洋, 等. 强化学习在自动驾驶技术中的应用与挑战. 同济大学学报(自然科学版), 2024, 52 (4): 520- 531.
|
|
HE Y X , LIN H Y , LIU Y , et al. Applications and challenges of reinforcement learning in autonomous driving technology. Journal of Tongji University (Natural Science), 2024, 52 (4): 520- 531.
|
12 |
刘勇, 徐雷, 张楚晗. 面向文本游戏的深度强化学习模型. 吉林大学学报(工学版), 2022, 52 (3): 666- 674.
|
|
LIU Y , XU L , ZHANG C H . Deep reinforcement learning model for text games. Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (3): 666- 674.
|
13 |
牛润良. 基于强化学习的Transformer模型解释与对抗攻击研究[D]. 长春: 吉林大学, 2022.
|
|
NIU R L. Research on transformer model interpretation and counterattack based on reinforcement learning[D]. Changchun: Jilin University, 2022. (in Chinese)
|
14 |
孔繁骏. 基于强化学习的智能服务机器人控制系统. 物联网技术, 2023, 13 (5): 77- 79.
|
|
KONG F J . Control system of intelligent service robot based on reinforcement learning. Internet of Things Technologies, 2023, 13 (5): 77- 79.
|
15 |
SINGH B , KUMAR R , SINGH V P . Reinforcement learning in robotic applications: a comprehensive survey. Artificial Intelligence Review, 2022, 55 (2): 945- 990.
doi: 10.1007/s10462-021-09997-9
|
16 |
HUNG S M , GIVIGI S N . A Q-learning approach to flocking with UAVs in a stochastic environment. IEEE Transactions on Cybernetics, 2017, 47 (1): 186- 197.
doi: 10.1109/TCYB.2015.2509646
|
17 |
HUNG S M, GIVIGI S N, NOURELDIN A. A Dyna-Q (lambda) approach to flocking with fixed-wing UAVs in a stochastic environment[C]//Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics. Washington D. C., USA: IEEE Press, 2015: 1918-1923.
|
18 |
WANG C, YAN C, XIANG X, et al. A continuous actor-critic reinforcement learning approach to flocking with fixed-wing UAVs[C]//Proceedings of Asian Conference on Machine Learning. Nagoya, Japan: PMLR, 2019: 64-79.
|
19 |
WANG C , WANG J , SHEN Y , et al. Autonomous navigation of UAVs in large-scale complex environments: a deep reinforcement learning approach. IEEE Transactions on Vehicular Technology, 2019, 68 (3): 2124- 2136.
doi: 10.1109/TVT.2018.2890773
|
20 |
LOWE R, WU Y, TAMAR A, et al. Multi-agent actor-critic for mixed cooperative-competitive environments[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 6382-6393.
|
21 |
ZHANG X P , ZHENG Y P , WANG L , et al. Multi-agent collaborative target search based on the multi-agent deep deterministic policy gradient with emotional intrinsic motivation. Applied Sciences, 2023, 13 (21): 11951.
doi: 10.3390/app132111951
|
22 |
李波, 越凯强, 甘志刚, 等. 基于MADDPG的多无人机协同任务决策. 宇航学报, 2021, 42 (6): 757- 765.
|
|
LI B , YUE K Q , GAN Z G , et al. Multi-UAV cooperative autonomous navigation based on multi-agent deep deterministic policy gradient. Journal of Astronautics, 2021, 42 (6): 757- 765.
|
23 |
NARVEKAR S , PENG B , LEONETTI M , et al. Curriculum learning for reinforcement learning domains: a framework and survey. Journal of Machine Learning Research, 2020, 21 (1): 7382- 7431.
|
24 |
陈人龙, 陈嘉礼, 李善琦, 等. 多智能体强化学习方法综述. 信息对抗技术, 2024, 3 (1): 18- 32.
|
|
CHEN R L , CHEN J L , LI S Q , et al. A survey of multi-agent reinforcement learning methods. Information Countermeasure Technology, 2024, 3 (1): 18- 32.
|
25 |
XIAO C , LU P , HE Q . Flying through a narrow gap using end-to-end deep reinforcement learning augmented with curriculum learning and Sim2Real. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34 (5): 2701- 2708.
doi: 10.1109/TNNLS.2021.3107742
|
26 |
罗睿卿, 曾坤, 张欣景. 稀疏异质多智能体环境下基于强化学习的课程学习框架. 计算机科学, 2024, 51 (1): 301- 309.
|
|
LUO R Q , ZENG K , ZHANG X J . Curriculum learning framework based on reinforcement learning in sparse heterogeneous multi-agent environments. Computer Science, 2024, 51 (1): 301- 309.
|