1 |
DOE J . Advancements in precision guided munitions. Journal of Military Technology, 2015, 25 (2): 45- 55.
|
2 |
HOSSAIN S , LEE D J . Deep learning-based real-time multiple-object detection and tracking from aerial imagery via a flying robot with GPU-based embedded devices. Sensors, 2019, 19 (15): 3371.
doi: 10.3390/s19153371
|
3 |
黄宏程, 李净, 胡敏, 等. 基于强化学习的机器人认知情感交互模型. 电子与信息学报, 2021, 43 (6): 1781- 1788.
|
|
HUANG H C , LI J , HU M , et al. Cognitive emotional interaction model of robot based on reinforcement learning. Journal of Electronics and Information Technology, 2021, 43 (6): 1781- 1788.
|
4 |
邵振峰, 蔡家骏, 王中元, 等. 面向智能监控摄像头的监控视频大数据分析处理. 电子与信息学报, 2017, 39 (5): 1116- 1122.
|
|
SHAO Z F , CAI J J , WANG Z Y , et al. Analytical processing method of big surveillance video data based on smart monitoring cameras. Journal of Electronics and Information Technology, 2017, 39 (5): 1116- 1122.
|
5 |
黄宏程, 廖强, 胡敏, 等. 基于知识图谱波纹网络的人机交互模型. 电子与信息学报, 2022, 44 (1): 221- 229.
|
|
HUANG H C , LIAO Q , HU M , et al. Human-computer interaction model based on knowledge graph ripple network. Journal of Electronics and Information Technology, 2022, 44 (1): 221- 229.
|
6 |
DAVID S B, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2010: 2544-2550.
|
7 |
CHOI J W, CHANG H J, FISCHER T, et al. Context-aware deep feature compression for high-speed visual tracking[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 479-488.
|
8 |
DANELLJAN M, HÄGER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking[C]//Proceedings of the International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2015: 4310-4318.
|
9 |
HENRIQUES J F , CASEIRO R , MARTINS P , et al. High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (3): 583- 596.
doi: 10.1109/TPAMI.2014.2345390
|
10 |
GALOOGAHI H K, FAGG A, LUCEY S. Learning background-aware correlation filters for visual tracking[C]//Proceedings of the International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 1144-1152.
|
11 |
|
12 |
LI B, YAN J J, WU W, et al. High performance visual tracking with siamese region proposal network[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 4821-4830.
|
13 |
WANG Q, TENG Z, XING J L, et al. Learning attentions: residual attentional siamese network for high performance online visual tracking[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 4854-4863.
|
14 |
ZHU Z, WANG Q, LI B, et al. Distractor-aware siamese networks for visual object tracking[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 103-119.
|
15 |
DANELLJAN M, ROBINSON A, KHAN F S, et al. Beyond correlation filters: learning continuous convolution operators for visual tracking[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 472-488.
|
16 |
DANELLJAN M, HÄGER G, KHAN F S, et al. Adaptive decontamination of the training set: a unified formulation for discriminative visual tracking[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 1430-1438.
|
17 |
DANELLJAN M, BHAT G, KHAN F S, et al. ECO: efficient convolution operators for tracking[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 6931-6939.
|
18 |
|
19 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceeding of the Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 5998-6008.
|
20 |
YU B, TANG M, ZHENG L Y, et al. High-performance discriminative tracking with Transformers[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 9836-9845.
|
21 |
WANG N, ZHOU W G, WANG J, et al. Transformer meets tracker: exploiting temporal context for robust visual tracking[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 1571-1580.
|
22 |
|
23 |
CHEN X , YAN B , ZHU J W , et al. High-performance Transformer tracking. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2023, 45 (7): 8507- 8523.
|
24 |
CHEN X, YAN B, ZHU J W, et al. Transformer tracking[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 8126-8135.
|
25 |
YAN B, PENG H W, FU J L. Learning spatio-temporal Transformer for visual tracking[C]//[JP3] Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 10428-10437.
|
26 |
XIE F, CHU L, LI J H, et al. VideoTrack: learning to track objects via video Transformer[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 22826-22835.
|
27 |
HE J K, CAN L Z, XIE S, et al. Target-aware tracking with long-term context attention[C]//Proceedings of the Conference on Artificial Intelligence AAAI. [S. l. ]: AAAI Press, 2023: 773-780.
|
28 |
GAO A Y, ZHOU C L, ZHANG J. Generalized relation modeling for Transformer tracking[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 18686-18695.
|
29 |
WU Q Q, YANG T Y, LIU Z Q, et al. DropMAE: masked autoencoders with spatial-attention dropout for tracking tasks[C]//Proceedings of the Conference on Computer Vision and Pattern Recogntion. Washington D. C., USA: IEEE Press, 2023: 14561-14571.
|
30 |
LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows[C]//Proceedings of the International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 9992-10002.
|
31 |
FAN H, LIN L, YANG F, et al. LaSOT: a high quality benchmark for large scale single object tracking[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 5374-5383.
|
32 |
MULLER M, BIBI A, GIANCOLA S, et al. TrackingNet: a large scale dataset and benchmark for object tracking in the wild[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 300-317.
|
33 |
HUANG L H , ZHAO X , HUANG K Q . GOT-10k: a large high diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (5): 1562- 1577.
doi: 10.1109/TPAMI.2019.2957464
|
34 |
|
35 |
MAYER C, DANELLJIA M, BHAT G, et al. Transforming model prediction for tracking[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 8721-8730.
|
36 |
|
37 |
CHEN B Y, LI P X, BAI L, et al. Backbone is all your need: a simplified architecture for visual object tracking[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2021: 375-392.
|
38 |
WU Y , LIM J , YANG M H . Object tracking benchmark. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (9): 1834- 1848.
doi: 10.1109/TPAMI.2014.2388226
|
39 |
TANG C M , WANG X , BAI Y C , et al. Learning spatial-frequency transformer for visual object tracking. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33 (9): 5102- 5116.
doi: 10.1109/TCSVT.2023.3249468
|
40 |
BLATTER P, KANAKIS M, DANELLJAN M, et al. Efficient visual tracking with exemplar Transformers[C]//Proceedings of the Winter Conference on Applications of Computer Vision. Washington D. C., USA: IEEE Press, 2023: 1571-1581.
|
41 |
CUI Y T , JIANG C , WU G S , et al. MixFormer: end-to-end tracking with iterative mixed attention. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46 (6): 4129- 4146.
doi: 10.1109/TPAMI.2024.3349519
|
42 |
GAO S Y, ZHOU C L, MA C. AiATrack: attention in attention for transformer visual tracking[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2022: 146-164.
|