1 |
高利军, 薛雷. 语音情感识别综述. 工业控制计算机, 2022, 35(10): 115-116, 120.
|
|
GAO L J, XUE L. Overview of speech emotion recognition. Industrial Control Computer, 2022, 35(10): 115-116, 120.
|
2 |
耿磊, 傅洪亮, 陶华伟, 等. 基于动态卷积递归神经网络的语音情感识别. 计算机工程, 2023, 49(4): 125-130, 137.
doi: 10.19678/j.issn.1000-3428.0064054
|
|
GENG L, FU H L, TAO H W, et al. Speech emotion recognition based on dynamic convolution recurrent neural network. Computer Engineering, 2023, 49(4): 125-130, 137.
doi: 10.19678/j.issn.1000-3428.0064054
|
3 |
SWAIN M, ROUTRAY A, KABISATPATHY P. Databases, features and classifiers for speech emotion recognition: a review. International Journal of Speech Technology, 2018, 21(1): 93- 120.
doi: 10.1007/s10772-018-9491-z
|
4 |
ER M B. A novel approach for classification of speech emotions based on deep and acoustic features. IEEE Access, 2020, 8, 221640- 221653.
doi: 10.1109/ACCESS.2020.3043201
|
5 |
RAYHAN A M, ISLAM S, MUZAHIDUL I A K M, et al. An ensemble 1D-CNN-LSTM-GRU model with data augmentation for speech emotion recognition. Expert Systems with Applications, 2023, 218, 119633.
doi: 10.1016/j.eswa.2023.119633
|
6 |
刘欣雨, 夏鸿斌, 刘渊. 说话者特征融合的对话情感识别模型. 小型微型计算机系统, 2025, 46(3): 571- 577.
|
|
LIU X Y, XIA H B, LIU Y. Speaker feature fusion model for emotion recognition in conversation. Journal of Chinese Computer Systems, 2025, 46(3): 571- 577.
|
7 |
|
8 |
孙韩玉, 黄丽霞, 张雪英, 等. 基于双通道卷积门控循环网络的语音情感识别. 计算机工程与应用, 2023, 59(2): 170- 177.
|
|
SUN H Y, HUANG L X, ZHANG X Y, et al. Speech emotion recognition based on dual-channel convolutional gated recurrent network. Computer Engineering and Applications, 2023, 59(2): 170- 177.
|
9 |
JAHANGIR R, TEH Y W, MUJTABA G, et al. Convolutional neural network-based cross-corpus speech emotion recognition with data augmentation and features fusion. Machine Vision and Applications, 2022, 33(3): 41.
doi: 10.1007/s00138-022-01294-x
|
10 |
TANBERK S, TVKEL D B. Ensemble learning with CNN-LSTM combination for speech emotion recognition[C]//Proceedings of International Conference on Computing and Communication Networks. Singapore: Springer Nature Singapore, 2022: 39-47.
|
11 |
LE N, NGUYEN K, NGUYEN A, et al. Global-local attention for emotion recognition. Neural Computing and Applications, 2022, 34(24): 21625- 21639.
doi: 10.1007/s00521-021-06778-x
|
12 |
MENG H, YAN T H, YUAN F, et al. Speech emotion recognition from 3D log-Mel spectrograms with deep learning network. IEEE Access, 2019, 7, 125868- 125881.
doi: 10.1109/ACCESS.2019.2938007
|
13 |
LIU K, WANG C, CHEN J Y, et al. Time-frequency attention for speech emotion recognition with squeeze-and-excitation blocks[C]//Proceedings of International Conference on Multimedia Modeling. Berlin, Germany: Springer, 2022: 533-543.
|
14 |
WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2020: 11534-11542.
|
15 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2018: 7132-7141.
|
16 |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2021: 13713-13722.
|
17 |
BAI S J, KOLTER J Z, KOLTUN V, et al. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. [2023-10-02]. https://arxiv.org/abs/1803.01271v2.
|
18 |
BURKHARDT F, PAESCHKE A, ROLFES M, et al. A database of German emotional speech[C]//Proceedings of the 9th European Conference on Speech Communication and Technology. Berlin, Germany: Springer, 2005: 1-10.
|
19 |
|
20 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of 2018 European Conference on Computer Vision (ECCV). Berlin, Germany: Springer, 2018: 3-19.
|
21 |
CHEN M Y, HE X J, YANG J, et al. 3-D convolutional recurrent neural networks with attention model for speech emotion recognition. IEEE Signal Processing Letters, 2018, 25(10): 1440- 1444.
doi: 10.1109/LSP.2018.2860246
|
22 |
LIU Z, KANG X, REN F J. Dual-TBNet: improving the robustness of speech features via dual-Transformer-BiLSTM for speech emotion recognition. IEEE/ACM Transactions on Audio, Speech and Language Processing, 2023, 31, 2193- 2203.
doi: 10.1109/TASLP.2023.3282092
|
23 |
CHEN Z Z, LI J W, LIU H, et al. Learning multi-scale features for speech emotion recognition with connection attention mechanism. Expert Systems with Applications, 2023, 214, 118943.
doi: 10.1016/j.eswa.2022.118943
|
24 |
ZHANG H Y, HUANG H M, HAN H. A novel heterogeneous parallel convolution Bi-LSTM for speech emotion recognition. Applied Sciences, 2021, 11(21): 9897.
|
25 |
HAN T, ZHANG Z, REN M Y, et al. Speech emotion recognition based on deep residual shrinkage network. Electronics, 2023, 12(11): 2512.
|
26 |
ZHU R F, SUN C X, WEI X P, et al. Speech emotion recognition using channel attention mechanism[C]//Proceedings of the 4th International Conference on Computer Engineering and Application (ICCEA). Washington D. C., USA: IEEE Press, 2023: 680-684.
|