[1] LIU P, KURT A, OZGUNER U. Trajectory prediction of a lane changing vehicle based on driver behavior estimation and classification[C]//Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems. Washington D. C., USA: IEEE Press, 2014: 942-947. [2] LEFÈVRE S, VASQUEZ D, LAUGIER C. A survey on motion prediction and risk assessment for intelligent vehicles[J]. ROBOMECH Journal, 2014, 11(1): 1-9. [3] 毛莺池, 陈杨. 不确定性车辆路口的轨迹预测[J]. 计算机科学, 2018, 45(3): 237-242. MAO Y C, CHEN Y. Ucertain vehicle intersection trajectory prediction[J]. Computer Science, 2018, 45(3): 237-242. (in Chinese) [4] HOUENOU A, BONNIFAIT P, CHERFAOUI V, et al. Vehicle trajectory prediction based on motion model and maneuver recognition[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Washington D. C., USA: IEEE Press, 2013: 4363-4369. [5] CHOI D, YIM J, BAEK M, et al. Machine learning-based vehicle trajectory prediction using V2V communications and on-board sensors[J]. Electronics, 2021, 10(4): 420. [6] 吴晓建, 危一华, 王爱春, 等. 基于融合Dropout与注意力机制的LSTM-GRU车辆轨迹预测[J]. 湖南大学学报(自然科学版), 2023, 50(4): 65-75. WU X H, WEI Y H, WANG A C, et al. Vehicle trajectory prediction based on LSTM-GRU integrating dropout and attention mechanism[J]. Journal of Hunan University(Natural Sciences), 2023, 50(4): 65-75. (in Chinese) [7] 方华珍, 刘立, 肖小凤, 等. 混合示教长短时记忆网络的车辆轨迹预测研究[J]. 交通运输系统工程与信息, 2023, 23(4): 80-87. FANG H Z, LIU L, XIAO X F, et al. Research on vehicle trajectory prediction based on mixed teaching force LSTM[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(4): 80-87. (in Chinese) [8] CAO Q X, ZHAO Z X, ZENG Q Q, et al. Real-time vehicle trajectory prediction for traffic conflict detection at unsignalized intersections[J]. Journal of Advanced Transportation, 2021, 2021: 8453726. [9] DEO N, TRIVEDI M M. Convolutional social pooling for vehicle trajectory prediction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Washington D. C., USA: IEEE Press, 2018: 1468-1476. [10] MO X Y, XING Y, LV C. Interaction-aware trajectory prediction of connected vehicles using CNN-LSTM networks[C]//Proceedings of the 46th Annual Conference of the IEEE Industrial Electronics Society. Washington D. C., USA: IEEE Press, 2020: 5057-5062. [11] MUKHERJEE S, WANG S, WALLACE A. Interacting vehicle trajectory prediction with convolutional recurrent neural networks[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Washington D. C., USA: IEEE Press, 2020: 4336-4342. [12] ZHONG Z R, LI R M, CHAI J, et al. Autonomous vehicle trajectory combined prediction model based on C-LSTM[C]//Proceedings of the International Conference on Fuzzy Theory and Its Applications. Washington D. C., USA: IEEE Press, 2021: 111-120. [13] SHEN G J, LI P F, CHEN Z Y, et al. Spatio-temporal interactive graph convolution network for vehicle trajectory prediction[J]. Internet of Things, 2023, 24: 100935. [14] ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM: human trajectory prediction in crowded spaces[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 961-971. [15] DEO N, TRIVEDI M M. Convolutional social pooling for vehicle trajectory prediction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Washington D. C., USA: IEEE Press, 2018: 1468-1476. [16] 黄玲, 崔躜, 游峰, 等. 适用于多车交互场景的车辆轨迹预测模型[J]. 吉林大学学报(工学版), 2024, 54(5): 1188-1185. HUANG L, CUI Z, YOU F, et al. Vehicle trajectory prediction model for multi-vehicle interaction scenario[J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1188-1185. (in Chinese) [17] 蔡国庆, 刘玲, 张冲等. 基于GNN-LSTM-CNN网络的6G车辆轨迹预测算法[J]. 西安电子科技大学学报, 2023, 50(3): 50-60. CAI G Q, LIU L, ZHANG C, et al. Algorithm for prediction of the 6G vehicle trajectory based on the GNN-LSTM-CNN network[J]. Journal of Xidian University, 2023, 50(3): 50-60. (in Chinese) [18] GAN N F, JIANG Z W, ZHOU B, et al. Research on vehicle trajectory prediction method for intersections without signal lights[J]. SAE International Journal of Connected and Automated Vehicles, 2021, 4(3): 124-131. [19] CHOI S, KIM J, YEO H. Attention-based recurrent neural network for urban vehicle trajectory prediction[J]. Procedia Computer Science, 2019, 151: 327-334. [20] 田彦涛, 许富强, 王凯歌, 等. 考虑周车信息的自车期望轨迹预测[J]. 吉林大学学报(工学版), 2023, 53(3): 674-681. TIAN Y T, XU F Q, WANG K G, et al. Expected trajectory prediction of vehicle considering surrounding vehicle information[J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 674-681. (in Chinese) [21] 闫建红, 刘芝妍, 王震. 融合时空注意力机制的多尺度卷积车辆轨迹预测[J]. 计算机工程, 2025, 51(8): 406-414. YAN J H, LIU Z Y, WANG X. Vehicle trajectory prediction based on spatial-temporal attention mechanisms and multi-scale convolutional social pooling[J]. Computer Engineering, 2025, 51(8): 406-414. (in Chinese) [22] 吴翊恺, 胡启洲, 吴啸宇. 车联网背景下的机动车辆轨迹预测模型[J]. 东南大学学报(自然科学版), 2022, 52(6): 1199-1208. WU Y K, HU Q Z, WU X Y. Vehicle trajectory prediction model in the context of Internet of vehicles[J]. Journal of Southeast University(Natural Science Edition), 2022, 52(6): 1199-1208. (in Chinese) [23] 金立生, 高铭, 郭柏苍, 等. 基于时空融合LSTM网络的驾驶视角轨迹预测[J]. 中国公路学报, 2022, 35(4): 325-332. JIN L S, GAO M, GUO B C, et al. Driver perspective trajectory prediction based on spatiotemporal fusion LSTM network[J]. China Journal of Highway and Transport, 2022, 35(4): 325-332. (in Chinese) [24] GENG M S, CHEN Y, XIA Y J, et al. Dynamic-learning spatial-temporal Transformer network for vehicular trajectory prediction at urban intersections[J]. Transportation Research Part C: Emerging Technologies, 2023, 156: 104330. [25] 温惠英, 张昕怡, 黄俊达, 等. 考虑动态交互作用的智能车辆轨迹预测研究[J]. 交通运输系统工程与信息, 2024, 24(4): 60-68. WEN H Y, ZHANG X Y, HUANG J D, et al. Research on intelligent vehicle trajectory prediction considering dynamic interaction[J]. Journal of Transportation Systems Engineering and Information Technology, 2024, 24(4): 60-68. (in Chinese) [26] 刘占文, 李文倩, 林杉, 等. 基于稀疏权重共享的多模态轨迹预测[J].中国公路学报, 2023, 36(9): 244-256. LIU Z W, LI W Q, LIN B, et al. Multimodal trajectory prediction based on sparse weight sharing[J]. China Journal of Highway and Transport, 2023, 36(9): 244-256. (in Chinese) [27] 宋秀兰, 董兆航, 单杭冠, 等. 基于时空融合的多头注意力车辆轨迹预测[J]. 浙江大学学报(工学版), 2023, 57(8): 1636-1643. SONG X L, DONG Z H, SHAN H G, et al. Vehicle trajectory prediction based on temporal-spatial multi-head attention mechanism[J]. Journal of Zhejiang University (Engineering Science), 2023, 57(8): 1636-1643. (in Chinese) |