[1] 陈钱. 先进夜视成像技术发展探讨[J]. 红外与激光工程,2022, 51(2): 9-16. CHEN Q. Discussions on the development of advanced night vision imaging technology[J]. Infrared and Laser Engineering, 2022, 51(2): 9-16. (in Chinese) [2] GUO P Y, ASIF M S, MA Z. Low-light color imaging via cross-camera synthesis[J]. IEEE Journal of Selected Topics in Signal Processing, 2022, 16(4): 828-842. [3] FENG H S, WANG L Z, WANG Y Z, et al. Learnability enhancement for low-light raw image denoising: a data perspective[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(1): 370-387. [4] YINGKUN H, JUN X, MINGXIA L, et al. NLH: a blind pixel-level non-local method for real-world image denoising[J]. IEEE Transactions on Image Processing, 2020, 29: 5121-5135. [5] YANG W, WANG W, HUANG H, et al. Sparse gradient regularized deep retinex network for robust low-light image enhancement[J]. IEEE Transactions on Image Processing, 2021, 30: 2072-2086. [6] HUANG H F, YANG W H, HU Y Y, et al. Towards low light enhancement with RAW images[J]. IEEE Transactions on Image Processing, 2022, 31: 1391-1405. [7] CUI Y, KNOLL A. PSNet: towards efficient image restoration with self-attention[J]. IEEE Robotics and Automation Letters, 2023, 8(9): 5735-5742. [8] HASSANI A, WALTON S, LI J C, et al. Neighborhood attention transformer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C.,USA:IEEE Press,2023: 6185-6194. [9] XIAO Y, YUAN Q Q, JIANG K, et al. TTST: a top-k token selective transformer for remote sensing image super-resolution[J]. IEEE Transactions on Image Processing, 2024, 33: 738-752. [10] TU Z Z, TALEBI H, ZHANG H, et al. MAXIM: multi-axis MLP for image processing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C.,USA:IEEE Press,2022: 5759-5770. [11] ZHANG S S, MENG N, LAM E Y. LRT: an efficient low-light restoration transformer for dark light field images[J]. IEEE Transactions on Image Processing, 2023, 32: 4314-4326. [12] 朱凯, 李理, 张彤, 等. 基于Transformer的多阶段运动模糊图像修复网络[J]. 计算机工程, 2024, 50(9): 276-285. ZHU K, LI L, ZHANG T, et al. Multi-stage motion blur image restoration network based on Transformer[J]. Computer Engineering, 2024, 50(9): 276-285. (in Chinese) [13] ANTONI B, BARTOMEU C, JEAN M M. A non-local algorithm for image denoising[J]. Computer Vision and Pattern Recognition, 2005, 2: 60-65. [14] DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095. [15] ZHANG K, ZUO W M, CHEN Y J, et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142-3155. [16] GUO S, YAN Z F, ZHANG K, et al. Toward convolutional blind denoising of real photographs[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C.,USA:IEEE Press,2019: 1712-1722. [17] 高煜宝, 文志诚. 基于注意力机制的双路解码器图像去噪方法[J]. 计算机工程, 2024, 50(9): 324-332. GAO Y B, WEN Z C. Dual decoder image denoising method based on attention mechanism[J]. Computer Engineering, 2024, 50(9): 324-332. (in Chinese) [18] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[EB/OL].[2024-07-05]. https://arxiv.org/abs/2010.11929. [19] CHEN H T, WANG Y H, GUO T Y, et al. Pre-trained image processing transformer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C.,USA:IEEE Press,2021: 12294-12305. [20] WANG Z, CUN X, BAO J, et al. Uformer: a general U-shaped transformer for image restoration[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2022: 17662-17672. [21] JIALE Z, YULUN Z, JINJIN G, et al. Xformer: hybrid X-shaped transformer for image denoising[EB/OL].[2024-07-05]. https://arxiv.org/abs/2303.06440. [22] 刘凯, 任洪逸, 李蓥,等. 基于交叉模态注意力特征增强的医学视觉问答[J]. 计算机工程, 2025, 51(6): 49-56. LIU K, REN H Y, LI Y, et al. Medical visual question answering based on cross-modal attention feature enhancement[J]. Computer Engineering, 2025, 51(6): 49-56. (in Chinese) [23] ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282. [24] LIU Y J, YU C C, YU M J, et al. Manifold SLIC: a fast method to compute content-sensitive superpixels[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C.,USA:IEEE Press,2016: 651-659. [25] ACHANTA R, SUSSTRUNK S. Superpixels and polygons using simple non-iterative clustering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C.,USA:IEEE Press,2017: 4895-4904. [26] ZHANG A, REN W, LIU Y, et al. Lightweight image super-resolution with superpixel token interaction[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C.,USA:IEEE Press,2023: 12682-12691. [27] PAN Y J, WEN C, ZHAO X L, et al. Irregular tensor representation for superpixel- guided hyperspectral image denoising[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 12-23. [28] ZHOU M, XU Z, TONG R K. Superpixel-guided class-level denoising for unsupervised domain adaptive fundus image segmentation without source data[J]. Computers in Biology and Medicine, 2023, 162: 107061. [29] ABDELHAMED A, LIN S, BROWN M S. A high-quality denoising dataset for smartphone cameras[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2018: 1692-1700. [30] PLOTZ T, ROTH S. Benchmarking denoising algorithms with real photographs[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2017: 2750-2759. [31] DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095. [32] PARAS M, ZHU L, NING X, et al. Improving extreme low-light image denoising via residual learning[C]//Proceedings of the IEEE International Conference on Multimedia and Exposition. Washington D.C.,USA:IEEE Press,2019: 916-921. [33] ZAMIR S W, ARORA A, KHAN S, et al. CycleISP: real image restoration via improved data synthesis[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C.,USA:IEEE Press,2020: 2693-2702. [34] ZAMIR S W, ARORA A, KHAN S, et al. Learning enriched features for real image restoration and enhancement[EB/OL].[2024-07-05]. https://arxiv.org/abs/2003.06792. [35] REN C, HE X H, WANG C C, et al. Adaptive consistency prior based deep network for image denoising[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C.,USA:IEEE Press,2021: 8592-8602. |