Abstract:
Moving object tracking is a key problem in computer vision and has many applications in various fields. This paper proposes a collaborative tracking method based on Co-Training frame work. The method fuses information from two types of features space to describe the object. The model is updated with Co-Training, which avoids the error accumulation problem. The experiment demonstrates the performance of the method under complex scenarios.
Key words:
object tracking,
Co-Training,
semi-supervised learning,
feature fusion
摘要: 运动目标跟踪是计算机视觉的核心问题之一,广泛应用于诸多领域。该文提出一种基于Co-Training半监督学习框架的目标跟踪方法。该方法融合2种互相独立的特征信息来描述目标模型,采用Co-Training来协同更新模型,有效避免了现有方法的误差累积问题。实验结果证明,该方法在复杂场景下仍能实现稳定有效的跟踪。
关键词:
目标跟踪,
联合训练,
半监督学习,
特征融合
CLC Number:
WANG Lu; ZHUO Qing; WANG Wen-yuan. Collaborative Object Tracking Based on Co-Training[J]. Computer Engineering, 2009, 35(3): 202-204.
王 路;卓 晴;王文渊. 基于Co-Training的协同目标跟踪[J]. 计算机工程, 2009, 35(3): 202-204.