1 |
YUNIARTI A, SUCIATI N. A review of deep learning techniques for 3D reconstruction of 2D images[C]//Proceedings of the 12th International Conference on Information & Communication Technology and System. Washington D. C., USA: IEEE Press, 2019: 327-331.
|
2 |
MILZ S, ARBEITER G, WITT C, et al. Visual SLAM for automated driving: exploring the applications of deep learning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Washington D. C., USA: IEEE Press, 2018: 247-257.
|
3 |
KHAN U, YASIN A, ABID M, et al. A methodological review of 3D reconstruction techniques in tomographic imaging. Journal of Medical Systems, 2018, 42 (10): 190.
doi: 10.1007/s10916-018-1042-2
|
4 |
SRA M, GARRIDO-JURADO S, SCHMANDT C, et al. Procedurally generated virtual reality from 3D reconstructed physical space[C]//Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology. New York, USA: ACM Press, 2016: 191-200.
|
5 |
CHOY C B, XU D F, GWAK J, et al. 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction[EB/OL]. [2023-07-05]. https://arxiv.org/abs/1604.00449.
|
6 |
XU Q G, WANG W Y, CEYLAN D, et al. Disn: deep implicit surface network for high-quality single-view 3D reconstruction[EB/OL]. [2023-07-05]. http://arxiv.org/abs/1905.10711v5.
|
7 |
GENOVA K, COLE F, SUD A, et al. Local deep implicit functions for 3D shape[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 4857-4866.
|
8 |
CHEN Z Q, ZHANG H. Learning implicit fields for generative shape modeling[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 5939-5948.
|
9 |
TANCIK M, SRINIVASAN P P, MILDENHALL B, et al. Fourier features let networks learn high frequency functions in low dimensional domains[EB/OL]. [2023-07-05]. http://arxiv.org/abs/2006.10739v1.
|
10 |
MURTAGH F. Multilayer perceptrons for classification and regression. Neurocomputing, 1991, 2 (5/6): 183- 197.
|
11 |
范文卓, 吴涛, 许俊平, 等. 基于多分辨率特征融合的任意尺度图像超分辨率重建. 计算机工程, 2023, 49 (9): 217- 225.
URL
|
|
FAN W Z, WU T, XU J P, et al. Super-resolution reconstruction of arbitrary scale images based on multi-resolution feature fusion. Computer Engineering, 2023, 49 (9): 217- 225.
URL
|
12 |
MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: representing scenes as neural radiance fields for view synthesis[EB/OL]. [2023-07-05]. https://arxiv.org/abs/2003.08934.
|
13 |
ZHU F, GUO S, SONG L, et al. Deep review and analysis of recent NeRFs. APSIPA Transactions on Signal and Information Processing, 2023, 12 (1): 1- 15.
|
14 |
WANG P, LIU Y, CHEN Z X, et al. F2-NeRF: fast neural radiance field training with free camera trajectories[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 4150-4159.
|
15 |
MÜLLER T, EVANS A, SCHIED C, et al. Instant neural graphics primitives with a multiresolution hash encoding. ACM Transactions on Graphics, 2022, 41 (4): 1- 15.
|
16 |
YU A, YE V, TANCIK M, et al. pixelNeRF: neural radiance fields from one or few images[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 4578-4587.
|
17 |
XU Q G, XU Z X, PHILIP J, et al. Point-NeRF: point-based neural radiance fields[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 5438-5448.
|
18 |
BARRON J T, MILDENHALL B, TANCIK M, et al. Mip-NeRF: a multiscale representation for anti-aliasing neural radiance fields[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 5855-5864.
|
19 |
STANLEY K O. Compositional pattern producing networks: a novel abstraction of development. Genetic Programming and Evolvable Machines, 2007, 8 (2): 131- 162.
doi: 10.1007/s10710-007-9028-8
|
20 |
KAJIYA J T, VON HERZEN B P. Ray tracing volume densities. ACM SIGGRAPH Computer Graphics, 1984, 18 (3): 165- 174.
doi: 10.1145/964965.808594
|
21 |
SCHONBERGER J L, FRAHM J M. Structure-from-motion revisited[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 4104-4113.
|
22 |
GAUTHIER A, FAURY R, LEVALLOIS J, et al. MIPNet. ACM Transactions on Graphics, 2022, 41 (6): 1- 12.
|
23 |
|
24 |
KAJIYA J T. The rendering equation[C]//Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques. New York, USA: ACM Press, 1986: 143-150.
|
25 |
WU L F, CAI G Y, ZHAO S, et al. Analytic spherical harmonic gradients for real-time rendering with many polygonal area lights. ACM Transactions on Graphics, 2020, 39 (4): 1- 14.
|
26 |
HUYNH-THU Q, GHANBARI M. Scope of validity of PSNR in image/video quality assessment. Electronics Letters, 2008, 44 (13): 800.
doi: 10.1049/el:20080522
|
27 |
惠子薇, 何坤, 冯犇, 等. 基于视觉特性的图像质量评价. 计算机工程, 2023, 49 (7): 189- 195.
URL
|
|
HUI Z W, HE K, FENG B, et al. Image quality assessment based on visual characteristics. Computer Engineering, 2023, 49 (7): 189- 195.
URL
|
28 |
BAKUROV I, BUZZELLI M, SCHETTINI R, et al. Structural Similarity Index (SSIM) revisited: a data-driven approach. Expert Systems with Applications, 2022, 189, 116087.
|
29 |
ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 586-595.
|