| 1 | DIWAKAR M, KUMAR M. A review on CT image noise and its denoising. Biomedical Signal Processing and Control, 2018, 42, 73- 88.  doi: 10.1016/j.bspc.2018.01.010
 | 
																													
																							| 2 | MAISONNEUVE P, RAMPINELLI C, BERTOLOTTI R, et al. Low-dose computed tomography screening for lung cancer in people with workplace exposure to asbestos. Lung Cancer, 2019, 131, 23- 30.  doi: 10.1016/j.lungcan.2019.03.003
 | 
																													
																							| 3 | KALRA M K, MAHER M M, TOTH T L, et al. Strategies for CT radiation dose optimization. Radiology, 2004, 230 (3): 619- 628.  doi: 10.1148/radiol.2303021726
 | 
																													
																							| 4 | MANDUCA A, YU L, TRZASKO J D, et al. Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT. Medical Physics, 2009, 36 (11): 4911- 4919.  doi: 10.1118/1.3232004
 | 
																													
																							| 5 | BALDA M, HORNEGGER J, HEISMANN B. Ray contribution masks for structure adaptive sinogram filtering. IEEE Transactions on Medical Imaging, 2012, 31 (6): 1228- 1239.  doi: 10.1109/TMI.2012.2187213
 | 
																													
																							| 6 | SUKOVIC P, CLINTHORNE N H. Penalized weighted least-squares image reconstruction for dual energy X-ray transmission tomography. IEEE Transactions on Medical Imaging, 2000, 19 (11): 1075- 1081.  doi: 10.1109/42.896783
 | 
																													
																							| 7 | HA S, MUELLER K. A GPU-accelerated multivoxel update scheme for Iterative Coordinate Descent (ICD) optimization in Statistical Iterative CT Reconstruction (SIR). IEEE Transactions on Computational Imaging, 2018, 4 (3): 355- 365.  doi: 10.1109/TCI.2018.2833622
 | 
																													
																							| 8 | CHANG Z Q, ZHANG R Q, THIBAULT J B, et al. Modeling and pre-treatment of photon-starved CT data for iterative reconstruction. IEEE Transactions on Medical Imaging, 2017, 36 (1): 277- 287.  doi: 10.1109/TMI.2016.2606338
 | 
																													
																							| 9 | WANG T, NAKAMOTO K, ZHANG H Y, et al. Reweighted anisotropic total variation minimization for limited-angle CT reconstruction. IEEE Transactions on Nuclear Science, 2017, 64 (10): 2742- 2760.  doi: 10.1109/TNS.2017.2750199
 | 
																													
																							| 10 | DONG Y Q, HANSEN P C, KJER H M. Joint CT reconstruction and segmentation with discriminative dictionary learning. IEEE Transactions on Computational Imaging, 2018, 4 (4): 528- 536.  doi: 10.1109/TCI.2018.2858139
 | 
																													
																							| 11 | DIWAKAR M, KUMAR M. CT image denoising using NLM and correlation-based wavelet packet thresholding. IET Image Processing, 2018, 12 (5): 708- 715.  doi: 10.1049/iet-ipr.2017.0639
 | 
																													
																							| 12 | ZHAO T, HOFFMAN J, MCNITT-GRAY M, et al. Ultra-low-dose CT image denoising using modified BM3D scheme tailored to data statistics. Medical Physics, 2019, 46 (1): 190- 198.  doi: 10.1002/mp.13252
 | 
																													
																							| 13 | JIA L N, ZHANG Q, SHANG Y, et al. Denoising for low-dose CT image by discriminative weighted nuclear norm minimization. IEEE Access, 2018, 6, 46179- 46193.  doi: 10.1109/ACCESS.2018.2862403
 | 
																													
																							| 14 | KANG E, MIN J, YE J C. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Medical Physics, 2017, 44 (10): e360- e375. | 
																													
																							| 15 | CHEN H, ZHANG Y, KALRA M K, et al. Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Transactions on Medical Imaging, 2017, 36 (12): 2524- 2535.  doi: 10.1109/TMI.2017.2715284
 | 
																													
																							| 16 | WOLTERINK J M, LEINER T, VIERGEVER M A, et al. Generative adversarial networks for noise reduction in low-dose CT. IEEE Transactions on Medical Imaging, 2017, 36 (12): 2536- 2545.  doi: 10.1109/TMI.2017.2708987
 | 
																													
																							| 17 | YI X, BABYN P. Sharpness-aware low-dose CT denoising using conditional generative adversarial network. Journal of Digital Imaging, 2018, 31 (5): 655- 669.  doi: 10.1007/s10278-018-0056-0
 | 
																													
																							| 18 | 熊景琦, 桑庆兵, 胡聪. 结合感知损失与双重对抗网络的低剂量CT图像去噪. 计算机工程, 2023, 49 (2): 213-221, 230.  doi: 10.19678/j.issn.1000-3428.0063806
 | 
																													
																							|  | XIONG J Q, SANG Q B, HU C. Low-dose CT image denoising combining perceptual loss and dual adversarial network. Computer Engineering, 2023, 49 (2): 213-221, 230.  doi: 10.19678/j.issn.1000-3428.0063806
 | 
																													
																							| 19 | 史再峰, 程明, 欧阳顺馨, 等. 基于DCPAN的低剂量能谱CT图像去噪方法. 天津大学学报(自然科学与工程技术版), 2023, 56 (2): 184- 192.  URL
 | 
																													
																							|  | SHI Z F, CHENG M, OUYANG S X, et al. Low dose spectral computed tomography image-based denoising method via DCPAN. Journal of Tianjin University (Science and Technology), 2023, 56 (2): 184- 192.  URL
 | 
																													
																							| 20 | TIAN C W, ZHENG M H, ZUO W M, et al. Multi-stage image denoising with the wavelet transform. Pattern Recognition, 2023, 134, 109050.  doi: 10.1016/j.patcog.2022.109050
 | 
																													
																							| 21 | HUANG J J, DRAGOTTI P L. WINNet: wavelet-inspired invertible network for image denoising. IEEE Transactions on Image Processing, 2022, 31, 4377- 4392.  doi: 10.1109/TIP.2022.3184845
 | 
																													
																							| 22 | LIU P J, ZHANG H Z, LIAN W, et al. Multi-level wavelet convolutional neural networks. IEEE Access, 2019, 7, 74973- 74985.  doi: 10.1109/ACCESS.2019.2921451
 | 
																													
																							| 23 | 李坤伦, 张鲁, 许宏科, 等. 小波域扩张网络用于低剂量CT图像快速重建. 西安电子科技大学学报, 2020, 47 (4): 86- 93.  URL
 | 
																													
																							|  | LI K L, ZHANG L, XU H K, et al. Waveletdomain dilated network for fast low-dose CT image reconstruction. Journal of Xidian University, 2020, 47 (4): 86- 93.  URL
 | 
																													
																							| 24 | SELESNICK I W, BARANIUK R G, KINGSBURY N C. The dual-tree complex wavelet transform. IEEE Signal Processing Magazine, 2005, 22 (6): 123- 151.  doi: 10.1109/MSP.2005.1550194
 | 
																													
																							| 25 | SHI W Z, CABALLERO J, HUSZAR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 1874-1883. | 
																													
																							| 26 | ZHANG K, ZUO W M, GU S H, et al. Learning deep CNN denoiser prior for image restoration[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 3929-3938. | 
																													
																							| 27 |  | 
																													
																							| 28 |  | 
																													
																							| 29 |  | 
																													
																							| 30 | TRUNG N T, TRINH D H, TRUNG N L, et al. Low-dose CT image denoising using deep convolutional neural networks with extended receptive fields. Signal, Image and Video Processing, 2022, 16 (7): 1963- 1971.  doi: 10.1007/s11760-022-02157-8
 |