[1] 何杏宇, 周易歆, 罗东旭, 等. 基于图神经网络和多主体评价的教学资源推荐[J]. 计算机工程, 2024, 50(7): 13-22. HE X Y, ZHOU Y X, LUO D X, et al. Education resource recommendation based on graph neural network and multi-subject rating[J]. Computer Engineering, 2024, 50(7): 13-22. (in Chinese) [2] BEN SCHAFER J, FRANKOWSKI D, HERLOCKER J, et al. Collaborative filtering recommender systems[EB/OL].[2024-05-05]. https://link.springer.com/chapter/10.1007/978-3-540-72079-9_9. [3] 姚迅, 王海鹏, 胡新荣, 等. 基于自适应增强的多视图对比推荐算法[J]. 计算机工程, 2025, 51(5): 103-113. YAO X, WANG H P, HU X R, et al. Multi-view contrastive recommendation algorithm based on adaptive enhancement[J]. Computer Engineering, 2025, 51(5): 103-113. (in Chinese) [4] WANG T, ISOLA P. Understanding contrastive representation learning through alignment and uniformity on the hypersphere[EB/OL].[2024-05-05]. https://arxiv.org/abs/2005.10242. [5] WANG C Y, YU Y Q, MA W Z, et al. Towards representation alignment and uniformity in collaborative filtering[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York,USA:ACM Press,2022: 1816-1825. [6] YANG L W, LIU Z W, WANG C, et al. Graph-based alignment and uniformity for recommendation[C]//Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. New York,USA:ACM Press,2023: 4395-4399. [7] OUYANG Z Y, ZHANG C H, HOU S F, et al. How to improve representation alignment and uniformity in graph-based collaborative filtering?[J]. Proceedings of the International AAAI Conference on Web and Social Media, 2024, 18: 1148-1159. [8] YING R, HE R N, CHEN K F, et al. Graph convolutional neural networks for web-scale recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York,USA:ACM Press,2018: 974-983. [9] WANG X, HE X N, WANG M, et al. Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York,USA:ACM Press,2019: 165-174. [10] HE X N, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York,USA:ACM Press,2020: 639-648. [11] MAO K L, ZHU J M, XIAO X, et al. UltraGCN: ultra simplification of graph convolutional networks for recommendation[C]//Proceedings of the 30th ACM International Conference on Information and Knowledge Management. New York,USA:ACM Press,2021: 1253-1262. [12] REN Z C, LIANG S S, LI P J, et al. Social collaborative viewpoint regression with explainable recommendations[C]//Proceedings of the 10th ACM International Conference on Web Search and Data Mining. New York,USA:ACM Press,2017: 485-494. [13] WANG X, HE X N, CAO Y X, et al. KGAT: knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York,USA:ACM Press,2019: 950-958. [14] 颜祯, 谢瑾奎, 曹磊亮. 基于邻域交互和图神经网络的推荐模型[J]. 小型微型计算机系统, 2023, 44(7): 1391-1397. YAN Z, XIE J K, CAO L L. Neighborhood interaction and graph neural network for recommendation model[J]. Journal of Chinese Computer Systems, 2023, 44(7): 1391-1397. (in Chinese) [15] WU J C, WANG X, FENG F L, et al. Self-supervised graph learning for recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York,USA:ACM Press,2021: 726-735. [16] KHOSLA P, TETERWAK P, WANG C, et al. Supervised contrastive learning[J]. Advances in Neural Information Processing Systems, 2020, 33: 18661-18673. [17] GAO T, YAO X, CHEN D. SimCSE: simple contrastive learning of sentence embeddings[EB/OL].[2024-05-05]. https://arxiv.org/abs/2104.08821. [18] ZHOU K, WANG H, ZHAO W X, et al. S3-Rec: self-supervised learning for sequential recommendation with mutual information maximization[C]//Proceedings of the 29th ACM International Conference on Information and Knowledge Management. New York,USA:ACM Press,2020: 1893-1902. [19] WEI Y W, WANG X, LI Q, et al. Contrastive learning for cold-start recommendation[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York,USA:ACM Press,2021: 5382-5390. [20] XIE X, SUN F, LIU Z Y, et al. Contrastive learning for sequential recommendation[C]//Proceedings of the 38th IEEE International Conference on Data Engineering (ICDE). Washington D.C.,USA:IEEE Press,2022: 1259-1273. [21] QIU R H, HUANG Z, YIN H Z, et al. Contrastive learning for representation degeneration problem in sequential recommendation[C]//Proceedings of the 15th ACM International Conference on Web Search and Data Mining. New York,USA:ACM Press,2022: 813-823. [22] LIN Z H, TIAN C X, HOU Y P, et al. Improving graph collaborative filtering with neighborhood-enriched contrastive learning[C]//Proceedings of the ACM Web Conference 2022. New York,USA:ACM Press,2022: 2320-2329. [23] CAI X, HUANG C, XIA L, et al. LightGCL: simple yet effective graph contrastive learning for recommendation[EB/OL].[2024-05-05]. https://arxiv.org/abs/2302.08191. [24] YU J L, YIN H Z, XIA X, et al. Are graph augmentations necessary? simple graph contrastive learning for recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York,USA:ACM Press,2022: 1294-1303. [25] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. New York,USA:ACM Press,2009: 452-461. [26] MAO K L, ZHU J M, WANG J P, et al. SimpleX: a simple and strong baseline for collaborative filtering[C]//Proceedings of the 30th ACM International Conference on Information and Knowledge Management. New York,USA:ACM Press,2021: 1243-1252. [27] OORD A, LI Y, VINYALS O. Representation learning with contrastive predictive coding[EB/OL].[2024-05-05]. https://arxiv.org/abs/1807.03748. [28] YU J L, YIN H Z, XIA X, et al. Self-supervised learning for recommender systems: a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(1): 335-355. [29] KIPF T N, WELLING M. Variational graph auto-encoders[EB/OL].[2024-05-05]. https://arxiv.org/abs/1611.07308. [30] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605. [31] BOTEV Z I, GROTOWSKI J F, KROESE D P. Kernel density estimation via diffusion[J]. The Annals of Statistics, 2010, 38(5):16-23. [32] CHEN J W, WU J K, WU J C, et al. Adap-τ: adaptively modulating embedding magnitude for recommendation[C]//Proceedings of the ACM Web Conference 2023. New York,USA:ACM Press,2023: 1085-1096. |