Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering ›› 2025, Vol. 51 ›› Issue (8): 215-226. doi: 10.19678/j.issn.1000-3428.0069494

• Cyberspace Security • Previous Articles     Next Articles

HGNM: Long-Short Term Flow Graph and Hybrid Graph Neural Network-based Saturation Attack Detection Method

LI Jiasong1,2,3, CUI Yunhe1,2,3,*(), SHEN Guowei1,2,3, GUO Chun1,2,3, CHEN Yi1,2,3, JIANG Chaohui1,2,3   

  1. 1. Engineering Research Center of Ministry of Education for Text Computing and Cognitive Intelligence, School of Computer Science and Technology, Guizhou University, Guiyang 550025, Guizhou, China
    2. State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, Guizhou, China
    3. Provincial Key Laboratory of Software Engineering and Information Security, Guizhou University, Guiyang 550025, Guizhou, China
  • Received:2024-03-06 Revised:2024-04-17 Online:2025-08-15 Published:2024-06-26
  • Contact: CUI Yunhe

HGNM: 基于长短期流图及混合图神经网络的饱和攻击检测方法

李佳松1,2,3, 崔允贺1,2,3,*(), 申国伟1,2,3, 郭春1,2,3, 陈意1,2,3, 蒋朝惠1,2,3   

  1. 1. 贵州大学计算机科学与技术学院文本计算与认知智能教育部工程研究中心, 贵州 贵阳 550025
    2. 贵州大学公共大数据国家重点实验室, 贵州 贵阳 550025
    3. 贵州大学贵州省软件工程与信息安全特色重点实验室, 贵州 贵阳 550025
  • 通讯作者: 崔允贺
  • 基金资助:
    国家自然科学基金(62102111); 贵州省科技计划项目(黔科合基础-ZK重点011); 贵州省高等学校大数据安全与网络安全创新团队(黔教技052号)

Abstract:

The separation of the control and data planes in Software Defined Network (SDN) enables its widespread application in large-scale network scenarios such as data centers, the Internet of Things (IoT), and cloud networks. However, this decoupled network architecture exposes the network to saturation attacks. Detecting saturation attacks based on Graph Neural Network (GNN) is a popular research topic in SDN. Nevertheless, the commonly used k-Nearest Neighbors (k-NN) graph in GNN overlooks short-term flow features, failing to effectively aggregate node information and preventing the model from fully leveraging the temporal characteristics of flows. To enhance the accuracy of saturation attack detection by utilizing both long- and short-term flow features, this study proposes a saturation attack detection method called HGNM, based on long-short-term flow graphs and a hybrid GNN. This method collects long- and short-term flow features by setting two sampling times. Additionally, this study designs a long-short-term flow graph generation method, named LSGH, based on the gray relational coefficient to construct long-short-term flow graphs, ensuring that the flow graphs encompass all features of the flows. The study also devises a hybrid GNN model, GU-GCN, by paralleling the GRU and GCN to capture both the temporal and spatial features of the flows, thereby improving the model's accuracy in detecting saturation attacks. Experimental results demonstrate that, on the generated graphs, the LSGH method outperforms the k-NN and CRAM algorithms in effectively enhancing the detection accuracy of the model. Moreover, compared to the other models, the GU-GCN model exhibits performance improvements in terms of accuracy, precision, recall, F1-score, ROC curve, PR curve, and confusion matrix.

Key words: Software Defined Network (SDN), saturation attack detection, Graph Neural Network (GNN), long-short term flow graph, grey correlation coefficient

摘要:

软件定义网络(SDN)的控制平面与数据平面解耦, 该特性使其广泛应用于数据中心、物联网、云网络等大规模网络场景中。然而, 这种解耦的网络架构也使其面临饱和攻击的挑战。基于图神经网络(GNN)检测饱和攻击是SDN中的研究热点, 但目前GNN中常用的k近邻(k-NN)图忽略了短期流特征, 无法有效聚合节点信息, 使模型不能充分利用流的时间特征。为利用流的长短期特征提高饱和攻击检测精度, 提出一种基于长短期流图及混合GNN的饱和攻击检测方法HGNM。该方法通过设置2个采样时间来收集流的长短期特征, 同时基于灰色关联系数设计一种长短期流图生成方法LSGH以构建长短期流图, 使流图包含流的全部特征。此外, 设计一种混合GNN模型GU-GCN, 通过并联GRU与GCN来获取流的时间特征与空间特征, 从而提高模型检测饱和攻击的精度。实验结果表明: 在生成图上, 相比于k-NN算法和CRAM算法, LSGH方法能有效提高模型的检测精度; 与其他模型相比, GU-GCN模型在准确率、精确率、召回率、F1值、ROC曲线、PR曲线、混淆矩阵方面都有性能提升。

关键词: 软件定义网络, 饱和攻击检测, 图神经网络, 长短期流图, 灰色关联系数