1 |
VELIČKOVIĆ P, FEDUS W, HAMILTON W L, et al. Deep graph infomax[C]//Proceedings of International Conference on Learning Representations. New Orleans, USA: [s. n.], 2019: 1-10.
|
2 |
YU J L, YIN H Z, LI J D, et al. Self-supervised multi-channel hypergraph convolutional network for social recommendation[C]//Proceedings of the Web Conference. New York, USA: ACM Press, 2021: 413-424.
|
3 |
WU J C, WANG X, FENG F L, et al. Self-supervised graph learning for recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2021: 726-735.
|
4 |
HASSANI K, KHASAHMADI A H. Contrastive multi-view representation learning on graphs[C]//Proceedings of International Conference on Machine Learning. [S. l.]: PMLR, 2020: 4116-4126.
|
5 |
李盼, 解庆, 李琳, 等. 知识增强的图神经网络序列推荐模型. 计算机工程, 2023, 49 (2): 70- 80.
URL
|
|
LI P , XIE Q , LI L , et al. Knowledge-enhanced graph neural network model for sequential recommendation. Computer Engineering, 2023, 49 (2): 70- 80.
URL
|
6 |
WANG X, HE X N, WANG M, et al. Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2019: 165-174.
|
7 |
HE X N, DENG K, WANG X, et al. LightGCN[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2020: 639-648.
|
8 |
CHEN L , WU L , HONG R C , et al. Revisiting graph based collaborative filtering: a linear residual graph convolutional network approach. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34 (1): 27- 34.
doi: 10.1609/aaai.v34i01.5330
|
9 |
XIA L H, HUANG C, ZHANG C X. Self-supervised hypergraph transformer for recommender systems[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2022: 1-10.
|
10 |
ZOU D, WEI W, MAO X L, et al. Multi-level cross-view contrastive learning for knowledge-aware recommender system[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2022: 1358-1368.
|
11 |
ZOU D, WEI W, MAO X L, et al. Multi-level cross-view contrastive learning for knowledge-aware recommender system[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2022: 1358-1368.
|
12 |
YANG Y H, HUANG C, XIA L H, et al. Knowledge graph contrastive learning for recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2022: 1434-1443.
|
13 |
|
14 |
|
15 |
CHAI H H, WEI X M, MA H X, et al. Knowledge-enhanced graph transformer network for multi-behavior and item-knowledge session-based recommendation[C]//Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC). Prague, Czech Republic: IEEE Press, 2022: 3421-3426.
|
16 |
XIAO F T, LI L, XU W N, et al. DMBGN: deep multi-behavior graph networks for voucher redemption rate prediction[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2021: 3786-3794.
|
17 |
WEI Y W, WANG X, NIE L Q, et al. Graph-refined convolutional network for multimedia recommendation with implicit feedback[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York, USA: ACM Press, 2020: 3541-3549.
|
18 |
WANG Q F , WEI Y W , YIN J H , et al. DualGNN: dual graph neural network for multimedia recommendation. IEEE Transactions on Multimedia, 2023, 25, 1074- 1084.
doi: 10.1109/TMM.2021.3138298
|
19 |
|
20 |
|
21 |
ZHU Y Q, XU Y C, YU F, et al. Graph contrastive learning with adaptive augmentation[C]//Proceedings of the Web Conference. New York, USA: ACM Press, 2021: 2069-2080.
|
22 |
PARK H, LEE S, KIM S, et al. Metropolis-Hastings data augmentation for graph neural networks[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2021: 19010-19020.
|
23 |
WANG Y W, CAI Y J, LIANG Y X, et al. Adaptive data augmentation on temporal graphs[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2021: 1440-1452.
|
24 |
YOU Y N, CHEN T L, SUI Y D, et al. Graph contrastive learning with augmentations[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2020: 5812-5823.
|
25 |
LIN Z H, TIAN C X, HOU Y P, et al. Improving graph collaborative filtering with neighborhood-enriched contrastive learning[C]//Proceedings of the ACM Web Conference. New York, USA: ACM Press, 2022: 2320-2329.
|
26 |
YU J, YIN H, XIA X, et al. Are graph augmentations necessary? Simple graph contrastive learning for recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2022: 1294-1303.
|
27 |
XUAN H R, LIU Y, LI B H, et al. Knowledge enhancement for contrastive multi-behavior recommendation[C]//Proceedings of the 16th ACM International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2023: 195-203.
|
28 |
YIN Y H , WANG Q Z , HUANG S Y , et al. AutoGCL: automated graph contrastive learning via learnable view generators. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36 (8): 8892- 8900.
doi: 10.1609/aaai.v36i8.20871
|
29 |
|
30 |
RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. Arlington, USA: AUAI Press, 2009: 452-461.
|
31 |
HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web. New York, USA: ACM Press, 2017: 173-182.
|
32 |
WEI T X, FENG F L, CHEN J W, et al. Model-agnostic counterfactual reasoning for eliminating popularity bias in recommender system[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2021: 1791-1800.
|