1 |
BAIK C, JAGADISH H V, LI Y Y. Bridging the semantic gap with SQL query logs in natural language interfaces to databases[C]//Proceedings of the IEEE 35th International Conference on Data Engineering. Washington D. C., USA: IEEE Press, 2019: 374-385.
|
2 |
ZHONG V, XIONG C M, SOCHER R. Seq2SQL: generating structured queries from natural language using reinforcement learning[EB/OL]. [2023-11-01]. https://arxiv.org/abs/1709.00103v7.
|
3 |
|
4 |
ZHANG X Y , YIN F J , MA G J , et al. M-SQL: multi-task representation learning for single-table Text2SQL generation. IEEE Access, 2020, 8, 43156- 43167.
doi: 10.1109/ACCESS.2020.2977613
|
5 |
吕剑清, 王先兵, 陈刚, 等. 面向工业生产的中文Text-to-SQL模型. 计算机应用, 2022, 42 (10): 2996- 3002.
|
|
LÜ J Q , WANG X B , CHEN G , et al. Chinese Text-to-SQL model for industrial production. Journal of Computer Applications, 2022, 42 (10): 2996- 3002.
|
6 |
何佳壕, 刘喜平, 舒晴, 等. 带复杂计算的金融领域自然语言查询的SQL生成. 浙江大学学报(工学版), 2023, 57 (2): 277- 286.
|
|
HE J H , LIU X P , SHU Q , et al. SQL generation from natural language queries with complex calculations on financial data. Journal of Zhejiang University (Engineering Science), 2023, 57 (2): 277- 286.
|
7 |
YU T, ZHANG R, YANG K, et al. Spider: a large-scale human-labeled dataset for complex and cross-domain semantic parsing and Text-to-SQL task[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2018: 3911-3921.
|
8 |
MIN Q K, SHI Y F, ZHANG Y. A pilot study for Chinese SQL semantic parsing[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, USA: ACL, 2019: 3652-3658.
|
9 |
RAFFEL C , SHAZEER N , ROBERTS A , et al. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research, 2020, 21 (1): 5485- 5551.
|
10 |
LI J Y , HUI B Y , CHENG R , et al. Graphix-T5: mixing pre-trained transformers with graph-aware layers for Text-to-SQL parsing. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37 (11): 13076- 13084.
doi: 10.1609/aaai.v37i11.26536
|
11 |
LI H Y , ZHANG J , LI C P , et al. RESDSQL: decoupling schema linking and skeleton parsing for Text-to-SQL. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37 (11): 13067- 13075.
doi: 10.1609/aaai.v37i11.26535
|
12 |
|
13 |
WANG B L, SHIN R, LIU X D, et al. RAT-SQL: relation-aware schema encoding and linking for Text-to-SQL parsers[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: ACL, 2020: 1-10.
|
14 |
CHEN Z, CHEN L, ZHAO Y B, et al. ShadowGNN: graph projection neural network for Text-to-SQL parser[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: ACL, 2021: 5567-5577.
|
15 |
CAI R C , YUAN J J , XU B Y , et al. SADGA: structure-aware dual graph aggregation network for Text-to-SQL. Advances in Neural Information Processing Systems, 2021, 34, 7664- 7676.
|
16 |
GAN Y J, CHEN X Y, PURVER M. Exploring underexplored limitations of cross-domain Text-to-SQL generalization[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2021: 8926-8931.
|
17 |
GAN Y J, CHEN X Y, HUANG Q P, et al. Towards robustness of Text-to-SQL models against synonym substitution[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg, USA: ACL, 2021: 2505-2515.
|
18 |
GUO J Q, ZHAN Z C, GAO Y, et al. Towards complex Text-to-SQL in cross-domain database with intermediate representation[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: ACL, 2019: 4524-4535.
|
19 |
曹合心, 赵亮, 李雪峰. 图神经网络在Text-to-SQL解析中的技术研究. 计算机科学, 2022, 49 (4): 110- 115.
|
|
CAO H X , ZHAO L , LI X F . Technical research of graph neural network for Text-to-SQL parsing. Computer Science, 2022, 49 (4): 110- 115.
|
20 |
WANG B L, SHIN R, LIU X D, et al. RAT-SQL: relation-aware schema encoding and linking for Text-to-SQL parsers[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: ACL, 2020: 7567-7578.
|
21 |
HUI B Y, GENG R Y, WANG L H, et al. S2SQL: injecting syntax to question-schema interaction graph encoder for Text-to-SQL parsers[M]//DHABI A, EMIRATES U A. Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg, USA: ACL, 2022: 1254-1262.
|
22 |
CAO R S, CHEN L, CHEN Z, et al. LGESQL: line graph enhanced Text-to-SQL model with mixed local and non-local relations[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg, USA: ACL, 2021: 2541-2555.
|
23 |
XIANG Y Z, ZHANG Q W, ZHANG X, et al. G3R: a graph-guided generate-and-rerank framework for complex and cross-domain Text-to-SQL generation[C]//Proceedings of Annual Conference of the Association for Computational Linguistics. Stroudsburg, USA: ACL, 2023: 338-352.
|
24 |
SCHOLAK T, SCHUCHER N, BAHDANAU D. PICARD: parsing incrementally for constrained auto-regressive decoding from language models[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2021: 9895-9901.
|
25 |
XIE T B, WU C H, SHI P, et al. UnifiedSKG: unifying and multi-tasking structured knowledge grounding with text-to-text language models[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2022: 602-631.
|
26 |
QI J X, TANG J Y, HE Z W, et al. RASAT: integrating relational structures into pretrained Seq2Seq model for Text-to-SQL[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2022: 3215-3229.
|
27 |
RAI D, WANG B L, ZHOU Y L, et al. Improving generalization in language model-based Text-to-SQL semantic parsing: two simple semantic boundary-based techniques[EB/OL]. [2023-11-01]. https://arxiv.org/abs/2305.17378v1.
|
28 |
PENNINGTON J, SOCHER R, MANNING C. Glove: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2014: 1532-1543.
|
29 |
|
30 |
JO J, BAEK J, LEE S, et al. Edge representation learning with hypergraphs[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2024: 7534-7546.
|
31 |
|
32 |
WANG K, SHEN W Z, YANG Y Y, et al. Relational graph attention network for aspect-based sentiment analysis[C]//Proceedings of 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2020: 3229-3238.
|
33 |
LIN X V, SOCHER R, XIONG C M. Bridging textual and tabular data for cross-domain Text-to-SQL semantic parsing[C]//Proceedings of 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2020: 4870-4888.
|
34 |
QIN B W, WANG L H, HUI B Y, et al. SUN: exploring intrinsic uncertainties in Text-to-SQL parsers[C]//Proceedings of the 29th International Conference on Computational Linguistics. Gyeongju, Republic of Korea: International Committee on Computational Linguistics, 2022: 298-5308.
|
35 |
WANG L H, QIN B W, HUI B Y, et al. Proton: probing schema linking information from pre-trained language models for Text-to-SQL parsing[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2022: 1889-1898.
|