[1] JIANG Mingyang. Classification and segmentation of 3D point clouds[D]. Shanghai: Shanghai Jiao Tong University, 2019.
姜名扬. 三维点云图形的分类和分割[D]. 上海: 上海交通大学,2019.
[2] CHEN Xiaozhi, MA Huimin, WAN Ji, et al. Multi-view 3d object detection network for autonomous driving[C]//Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE Computer Society Press, 2017:
1907-1915.
[3] ZHU Yuke, MOTTAGHI R, KOLVE E, et al. Target-driven visual navigation in indoor scenes using deep reinforcement
learning[C]//IEEE international conference on robotics and automation. Marina Bay Sands, Singapore: IEEE Computer Society
Press, 2017: 3357-3364.
[4] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J].
Communications of the ACM, 2017, 60(6): 84-90. [5] ZENG Bi, HUANG Wen. An Indoor Point Cloud Segmentation Method Fusing with Multi-feature Cluster Ensemble[J].Computer
Engineering, 2018, 44(3): 281-286.
曾碧, 黄文. 一种融合多特征聚类集成的室内点云分割方法[J]. 计算机工程, 2018, 44(3): 281-286.
[6] SU Hang, MAJI S, KALOGERAKIS E, et al. Multi-view Convolutional Neural Networks for 3D Shape Recognition[C]//IEEE
International Conference on Computer Vision. Santiago, Chile: IEEE Press, 2015: 945-953.
[7] SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-Scale Image Recognition[J]. arXiv preprint
arXiv:1409.1556, 2014.
[8] BOULCH A , GUERRY J , LE Saux B , et al. SnapNet: 3D point cloud semantic labeling with 2D deep segmentation networks[J].
Computers & Graphics, 2017, 71(APR.):189-198.
[9] MATURANA D, SCHERER S. VoxNet: A 3D Convolutional Neural Network for real-time object recognition[C]//IEEE/RSJ
International Conference on Intelligent Robots and Systems. Hamburg, Germany: IEEE Press, 2015: 922-928.
[10] LE T, DUAN Ye. PointGrid: A deep network for 3D shape understanding[C]//IEEE Conference on Computer Vision and Pattern
Recognition. Salt Lake City, USA: IEEE Computer Society Press, 2018: 9204– 9214.
[11] KLOKOV R, LEMPITSKY V. Escape from cells: Deep kd-networks for the recognition of 3d point cloud
models[C]//Proceedings of the IEEE International Conference on Computer Vision. NewYork, USA: IEEE Press, 2017: 863-872.
[12] GU Li, JI Yi, LIU Chunping. A Classification Model of 3D Point Cloud Based On Multimodal Feature Fusion[J/OL]. Computer
Engineering:1-7[2020-09-25].https://doi.org/10.19678/j.issn.1000-3428.0057147.
顾 砾 , 季 怡 , 刘 纯 平 . 基 于 多 模 态 特 征 融 合 的 三 维 点 云 分 类 方 法 [J/OL]. 计 算 机 工 程 :1-7[2020-09-25].
https://doi.org/10.19678/j.issn.1000-3428.0057147.
[13] LI Meijia, YU Zekuan, LIU Xiao, et al. Progress of point cloud algorithm in medical field[J]. Journal of Image and Graphics,
2020, 25(10): 2013-2023.
李美佳,于泽宽,刘晓,等.点云算法在医学领域的研究进展[J]. 中国图象图形学报, 2020, 25(10): 2013-2023.
[14] ZHANG Rui, LI Jintao. A Survey on Algorithm Research of Scene Parsing Based on Deep Learning[J]. Journal of Computer
Research and Development, 2020, 057(004): 859-875.
张蕊, 李锦涛. 基于深度学习的场景分割算法研究综述[J]. 计算机研究与发展, 2020, 057(004): 859-875.
[15] QI C R, SU Hao, MO K, et al. Pointnet: Deep learning on point sets for 3d classification and segmentation[C]//Proceedings of the
IEEE conference on computer vision and pattern recognition. 2017: 652-660.
[16] QI C R, YI L, SU Hao, et al. Pointnet++: Deep hierarchical feature learning on point sets in a metricspace[C]//Advances in Neural
Information Processing Systems. California, USA: IEEE Press, 2017: 5099-5108.
[17] LANDRIEU L, OBOZINSKI G. Cut pursuit: Fast algorithms to learn piecewise constant functions on general weighted graphs[J].
SIAM Journal on Imaging Sciences, 2017, 10(4): 1724-1766.
[18] LANDRIEU L, SIMONOVSKY M. Large-scale point cloud semantic segmentation with superpoint graphs[C]//Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE Computer Society Press,2018:
4558-4567.
[19] CHO K, VAN Merriënboer B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical
machine translation[J]. arXiv preprint arXiv:1406.1078, 2014.
[20] LIN Tsung-Yi, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE international
conference on computer vision. Venice, Italy: IEEE Computer Society Press,2017: 2980-2988.
[21] ARMENI I, SAX S, ZAMIR A R, et al. Joint 2D-3D-semantic data for indoor scene understanding[J]. arXiv preprint
arXiv:1702.01105,2017.
[22] ACHANTA R , SHAJI A , SMITH K , et al. SLIC Superpixels Compared to State-of-the-Art Superpixel Methods[J]. IEEE
Transactions on Pattern Analysis & Machine Intelligence, 2012, 34(11):2274-2282. [23] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[C]//Advances in neural information
processing systems. Montreal, Canada: MIT Press, 2014: 3104-3112.
[24] SIMONOVSKY M, KOMODAKIS N. Dynamic edge-conditioned filters in convolutional neural networks on
graphs[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE Computer
Society Press, 2017: 3693-3702.
[25] DEMANTKÉ J, MALLET C, DAVID N, et al. Dimensionality based scale selection in 3D lidar point clouds[J]. ISPRS -
International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 2011, 38(5): 97-102.
[26] KLAMBAUER G, UNTERTHINER T, MAYR A, et al. Self-normalizing neural networks[C]//Advances in neural information
processing systems. California, USA: MIT Press, 2017: 971-980.
[27] GRAVES A. Long Short-Term Memory: Supervised Sequence Labelling with Recurrent Neural Networks[J]. Springer, 2012, 9(8):
1735-1780.
[28] ENGELMANN F, KONTOGIANNI T, HERMANS A, et al. Exploring spatial context for 3D semantic segmentation of point
clouds[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops. New York, USA: IEEE Press,
2017: 716-724.
[29] HUANG Qiangui, WANG Weiyue, NEUMANN U. Recurrent slice networks for 3d segmentation of point clouds[C]//Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE Computer Society Press,2018:
2626-2635.
|