1 |
赖昌伟, 黎静华, 陈博, 等. 光伏发电出力预测技术研究综述. 电工技术学报, 2019, 34(6): 1201- 1217.
URL
|
|
LAI C W, LI J H, CHEN B, et al. Review of photovoltaic power output prediction technology. Transactions of China Electrotechnical Society, 2019, 34(6): 1201- 1217.
URL
|
2 |
CUI S C, WANG Y W, LI C J, et al. Prosumer community: a risk aversion energy sharing model. IEEE Transactions on Sustainable Energy, 2020, 11(2): 828- 838.
doi: 10.1109/TSTE.2019.2909301
|
3 |
PEREZ R, LORENZ E, PELLAND S, et al. Comparison of numerical weather prediction solar irradiance forecasts in the US, Canada and Europe. Solar Energy, 2013, 94, 305- 326.
doi: 10.1016/j.solener.2013.05.005
|
4 |
司志远, 杨明, 于一潇, 等. 基于卫星云图特征区域定位的超短期光伏功率预测方法. 高电压技术, 2021, 47(4): 1214- 1223.
URL
|
|
SI Z Y, YANG M, YU Y X, et al. Ultra-short-term photovoltaic power prediction method based on satellite image feature region positioning. High Voltage Engineering, 2021, 47(4): 1214- 1223.
URL
|
5 |
仁庆道尔吉, 程坤, 郑碧莹. 基于卫星云图和改进AlexNet的沙尘暴预测方法. 计算机应用, 2022, 42(S2): 310- 314.
URL
|
|
REN Q D E J, CHENG K, ZHENG B Y. Sandstorm prediction method based on satellite cloud imageries and improved AlexNet. Journal of Computer Applications, 2022, 42(S2): 310- 314.
URL
|
6 |
CHENG H Y. Cloud tracking using clusters of feature points for accurate solar irradiance nowcasting. Renewable Energy, 2017, 104, 281- 289.
doi: 10.1016/j.renene.2016.12.023
|
7 |
DISSAWA D M L H, GODALIYADDA G M R I, EKANAYAKE M P B, et al. Cross-correlation based cloud motion estimation for short-term solar irradiation predictions[C]//Proceedings of IEEE International Conference on Industrial and Information Systems. Washington D. C., USA: IEEE Press, 2017: 1-6.
|
8 |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory. Neural Computation, 1997, 9(8): 1735- 1780.
doi: 10.1162/neco.1997.9.8.1735
|
9 |
廖雪超, 伍杰平, 陈才圣. 结合注意力机制与LSTM的短期风电功率预测模型. 计算机工程, 2022, 48(9): 286-297, 304.
URL
|
|
LIAO X C, WU J P, CHEN C S. Short-term wind power prediction model combining attention mechanism and LSTM. Computer Engineering, 2022, 48(9): 286-297, 304.
URL
|
10 |
许芳芳, 杨俊杰, 刘宏志. 基于ST-LSTM网络的位置预测模型. 计算机工程, 2019, 45(9): 1- 7.
URL
|
|
XU F F, YANG J J, LIU H Z. Location prediction model based on ST-LSTM network. Computer Engineering, 2019, 45(9): 1- 7.
URL
|
11 |
XU Z R, WANG Y B, LONG M S, et al. PredCNN: predictive learning with cascade convolutions[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. New York, USA: ACM Press, 2018: 2940-2947.
|
12 |
LIU X L, YIN J Q, LIU J, et al. TrajectoryCNN: a new spatio-temporal feature learning network for human motion prediction. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(6): 2133- 2146.
doi: 10.1109/TCSVT.2020.3021409
|
13 |
GAO Z Y, TAN C, WU L R, et al. SimVP: simpler yet better video prediction[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 3170-3180.
|
14 |
PAN T, JIANG Z Q, HAN J N, et al. Taylor saves for later: disentanglement for video prediction using Taylor representation. Neurocomputing, 2022, 472, 166- 174.
doi: 10.1016/j.neucom.2021.11.021
|
15 |
李江, 王义伟, 魏超, 等. 卡尔曼滤波理论在电力系统中的应用综述. 电力系统保护与控制, 2014, 42(6): 135- 144.
URL
|
|
LI J, WANG Y W, WEI C, et al. A survey on the application of Kalman filtering method in power system. Power System Protection and Control, 2014, 42(6): 135- 144.
URL
|
16 |
LONG Z, LU Y, MA X, et al. PDE-Net: learning PDEs from data[C]//Proceedings of International Conference on Machine Learning. New York, USA: ACM Press, 2018: 3208-3216.
|
17 |
JULIAN L, SANKARANARAYANAN A C. Precise forecasting of sky images using spatial warping[C]//Proceedings of IEEE/CVF International Conference on Computer Vision Workshops. Washington D. C., USA: IEEE Press, 2021: 1136-1144.
|
18 |
IONESCU C, PAPAVA D, OLARU V, et al. Human 3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1325- 1339.
doi: 10.1109/TPAMI.2013.248
|
19 |
WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2004, 13(4): 600- 612.
doi: 10.1109/TIP.2003.819861
|
20 |
鲁甜, 刘蓉, 刘明, 等. 基于特征图注意力机制的图像超分辨率重建. 计算机工程, 2021, 47(3): 261- 268.
URL
|
|
LU T, LIU R, LIU M, et al. Image super-resolution reconstruction based on attention mechanism of feature map. Computer Engineering, 2021, 47(3): 261- 268.
URL
|
21 |
WANG Y B, LONG M S, WANG J M, et al. PredRNN: recurrent neural networks for predictive learning using spatiotemporal LSTMs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 879-888.
|
22 |
WANG Y B, GAO Z F, LONG M S, et al. PredRNN++: towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning[C]//Proceedings of International Conference on Machine Learning. New York, USA: ACM Press, 2018: 5123-5132.
|
23 |
WANG Y B, ZHANG J J, ZHU H Y, et al. Memory in memory: a predictive neural network for learning higher-order non-stationarity from spatiotemporal dynamics[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 9154-9162.
|
24 |
LE GUEN V, THOME N. Disentangling physical dynamics from unknown factors for unsupervised video prediction[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 11474-11484.
|
25 |
LE GUEN V, THOME N. A deep physical model for solar irradiance forecasting with fisheye images[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 630-631.
|