[1]刘知远,孙茂松,林衍凯,等.知识表示学习研究进展[J].计算机研究与发展,2016,53(2):247-261.
[2]袁书寒,向阳.词汇语义表示研究综述[J].中文信息学报,2016,30(5):1-8.
[3]DONG X,GABRILOVICH E,HEITZ G,et al.Knowledge vault:a Web-scale approach to probabilistic knowledge fusion[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2014:601-610.
[4]安波,韩先培,孙乐,等.基于分布式表示和多特征融合的知识库三元组分类[J].中文信息学报,2016,30(6):84-89.
[5]COLLOBERT R,WESTON J,BOTTOU L,et al.Natural language processing(almost) from scratch[J].Journal of Machine Learning Research,2011,12(1):2493-2537.
[6]ZENG D,LIU K,LAI S,et al.Relation classification via convolutional deep neural network[EB/OL].[2017-06-10].http://www.aclweb.org/anthology/C/C14/C14-1220.pdf.
[7]BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating embeddings for modeling multi-relational data[C]//Proceedings of the 26th International Con-ference on Neural Information Processing Systems.[S.l.]:Curran Associates.,Inc.,2013:2787-2795.
[8]WANG Z,ZHANG J,FENG J,et al.Knowledge graph and text jointly embedding[EB/OL].[2017-06-10].http://www.aclweb.org/anthology/attachments/D/D14/D14-1167.Attachment.pdf.
[9]WANG Z,ZHANG J,FENG J,et al.Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press,2014:1112-1119.
[10]LIN Y,LIU Z,SUN M,et al.Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press,2015:2181-2187.
[11]JI G,HE S,XU L,et al.Knowledge graph embedding via dynamic mapping matrix[EB/OL].[2017-06-10].http://or.nsfc.gov.cn/bitstream/00001903-5/149814/1/1000014952718.pdf.
[12]SOCHER R,CHEN D,MANNING C D,et al.Reasoning with neural tensor networks for knowledge base completion[C]//Proceedings of the 26th Inter-national Conference on Neural Information Processing Systems.[S.l.]:Curran Associates.,Inc.,2013:926-934.
[13]MIKOLOV T,CHEN K,CORRADO G,et al.Efficient estimation of word representations in vector space[EB/OL].[2017-06-10].http://www.surdeanu.info/mihai/teaching/ista555-spring15/readings/mikolov2013.pdf.
[14]XIE R,LIU Z,JIA J,et al.Representation learning of knowledge graphs with entity descriptions[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press,2016:2659-2665.
[15]ZHANG D,YUAN B,WANG D,et al.Joint semantic relevance learning with text data and graph knowledge[EB/OL].[2017-06-10].http://wing.comp.nus.edu.sg/~antho/W/W15/W15-4004.pdf.
[16]LONG T,LOWE R,CHEUNG J C K,et al.Leveraging lexical resources for learning entity embeddings in multi-relational data[EB/OL].[2017-06-10].http://aclweb.org/anthology/P16-2019.
[17]TIAN F,GAO B,CHEN E H,et al.Learning better word embedding by asymmetric low-rank projection of knowledge graph[J].Journal of Computer Science and Technology,2016,31(3):624-634.
[18]BORDES A,GLOROT X,WESTON J,et al.A semantic matching energy function for learning with multi-relational data[J].Machine Learning,2014,94(2):233-259.
|