作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2018, Vol. 44 ›› Issue (10): 309-313. doi: 10.19678/j.issn.1000-3428.0049981

• 开发研究与工程应用 • 上一篇    下一篇

针对图像隐写分析的卷积神经网络结构改进

高培贤a,b,魏立线a,b,刘佳a,b,刘明明a,b   

  1. 武警工程大学 a.网络与信息安全武警部队重点实验室; b.密码工程学院,西安 710086
  • 收稿日期:2018-01-05 出版日期:2018-10-15 发布日期:2018-10-15
  • 作者简介:高培贤(1994—),男,硕士研究生,主研方向为信息隐藏;魏立线,教授;刘佳,讲师、博士;刘明明,硕士研究生
  • 基金资助:

    国家自然科学基金(61403417)

Improvement of convolutional neural network structure for image steganalysis

GAO Peixiana,b,WEI Lixiana,b,LIU Jiaa,b,LIU Mingminga,b   

  1. a.Key Laboratory of Network and Information Security under the Chinese Armed Police Force; b.College of Cryptography,Engineering University of the Chinese Armed Police Force,Xi’an 710086,China
  • Received:2018-01-05 Online:2018-10-15 Published:2018-10-15

摘要: 针对目前图像隐写分析准确率较低的问题,构建一个基于多层感知卷积层的卷积神经网络隐写分析模型。使用多层感知卷积层代替传统的线性卷积层,提高模型的非线性能力,提取载 体/隐写图像更抽象的特征。采用全局平均池化层代替全连接层,以减少网络的参数并提高模型的训练效率。实验结果表明,相比传统的图像隐写分析算法和现有的卷积神经网络隐写 分析模型,该模型能够有效提高隐写分析的检测准确率,对S-UNIWARD嵌入算法的隐写分析检测准确率达到90.87%。

关键词: 隐写分析, 卷积神经网络, 多层感知卷积层, 池化层, 全连接层

Abstract: Aiming at the situation that the accuracy of image steganalysis is not high,a steganalysis model of Convolutional Neural Network(CNN) based on Multi-layer percepual convolution layer(Mlpconv) is constructed.The model uses multi-layer perceptual convolution layer instead of the traditional linear convolution layer to improve the nonlinear capability of the model and extract more abstract features of the carrier/steganographic image;the global average pooling layer is used to instead of the fully connection layer,which effectively reduces the network parameters and improves the training efficiency of the model.Experimental results show that compared with the traditional image steganalysis algorithm and the existing steganalysis model of convolutional neural network,the model can effectively improve the detection effect of steganalysis,and the accuracy of steganalysis detection of S-UNIWARD embedding algorithm reaches 90.87%.

Key words: steganalysis, Convolutional Neural Network(CNN), Multi-layer perceptual convolution layer(Mlpconv), pool layer, fully connected layer

中图分类号: