[1] MEHRABIAN A,RUSSELL J A.An approach to environ-mental psychology[M].Cambridge,USA:MIT Press,1974. [2] ZHANG Yanliang,LU Bing.Micro-expression recognition method based on information gain feature selection[J].Computer Engineering,2019,45(5):261-266.(in Chinese)张延良,卢冰.基于信息增量特征选择的微表情识别方法[J].计算机工程,2019,45(5):261-266. [3] ZHAO Guoying,PIETIKÃINEN M.Dynamic texture recognition using local binary patterns with an application to facial expressions[J].Transactions on Pattern Analysis and Machine Intelligence,2007,29(6):915-928. [4] DAHMANE M,MEUNIER J.Emotion recognition using dynamic grid-based HoG features[C]//Proceedings of International Conference on Automatic Face and Gesture Recognition.Washington D.C.,USA:IEEE Press,2011:884-888. [5] BARTLETT M S,LITTLEWORT G,FRANK M,et al.Recognizing facial expression:machine learning and application to spontaneous behavior[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2005:568-573. [6] CORTES C,VAPNIK V N.Support vector networks[J].Machine Learning,1995,20(3):273-297. [7] HUANG Zhong,HU Min,LIU Juan.Facial expression recognition method based on multi-feature decision-level fusion[J].Computer Engineering,2015,41(10):171-176.(in Chinese)黄忠,胡敏,刘娟.基于多特征决策级融合的表情识别方法[J].计算机工程,2015,41(10):171-176. [8] PAN Wusheng,HUANG Yushui.A facial expression recognition method based on gaussian process latent variable method[J].Computer Simulation,2018,35(3):341-344.(in Chinese)潘武生,黄玉水.一种基于高斯过程隐变量模型的表情识别方法[J].计算机仿真,2018,35(3):341-344. [9] HE Zhichao,ZHAO Longzhang,CHEN Chuang.Convolution neural network with multi-resolution feature fusion for facial expression recognition[J].Laser & Optoelectronics Progress,2018,55(7):370-375.(in Chinese)何志超,赵龙章,陈闯.用于人脸表情识别的多分辨率特征融合卷积神经网络[J].激光与光电子学进展,2018,55(7):370-375. [10] CAI Jie,MENG Zibo,KHAN A S,et al.Island loss for learning discriminative features in facial expression recognition[C]//Proceedings of the 13th IEEE Inter-national Conference on Automatic Face and Gesture Recognition.Washington D.C.,USA:IEEE Press,2018:302-309. [11] DAI Wenyuan,YANG Qiang,XUE Guirong,et al.Boosting for transfer learning[C]//Proceedings of the 24th International Conference on Machine Learning.New York,USA:ACM Press,2007:193-200. [12] SHEN Junge,ZHENG Enrang,CHENG Zhiyong,et al.Assisting attraction classification by harvesting Web data[J].IEEE Access,2017,10(5):1600-1608. [13] ZHAO Zhongtang,CHEN Yiqiang,LIU Junfa,et al.Cross-mobile ELM based activity recognition[J].International Journal of Engineering and Industries,2010,1(1):30-38. [14] YAN Keyu,ZHENG Wenming,CUI Zhen,et al.Cross-database facial expression recognition via unsupervised domain adaptive dictionary learning[C]//Proceedings of International Conference on Neural Information Processing.Berlin,Germany:Springer,2016:427-434. [15] SUN Baochen,SAENKO K.Deep coral:correlation alignment for deep domain adaptation[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2016:443-450. [16] MIAO Yunqian,ARAUJO R,KAMEL M S.Cross-domain facial expression recognition using supervised kernel mean matching[C]//Proceedings of the 11th International Conference on Machine Learning and Applications.Washington D.C.,USA:IEEE Press,2012:326-332. [17] HU Jie,SHEN Li,ALBANIE S,et al.Squeeze-and-excitation networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:7132-7141. [18] GRETTON A,SEJDINOVIC D,STRATHMANN H,et al.Optimal kernel choice for large-scale two-sample tests[M]//PEREIRA F,BURGES C J C,BOTTOU L,et al.Advances in neural information processing systems.Cambridge,USA:MIT Press,2012:1205-1213. [19] IOFFE S,SZEGEDY C.Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of International Conference on Machine Learning.New York,USA:ACM Press,2015:448-456. [20] KRIZHEVSKY A,SUTSKEVER I,HINTON G.ImageNet classification with deep convolutional neural networks[J].Advances in Neural Information Processing Systems,2012,25(2):1097-1105. [21] SEJDINOVIC D,SRIPERUMBUDUR B,GRETTON A,et al.Equivalence of distance-based and RKHS-based statistics in hypothesis testing[J].The Annals of Statistics,2013,41(5):2263-2291. [22] GRETTON A.A kernel two-sample test[J].Journal of Machine Learning Research,2012,13(1):723-773. [23] LYONS M J,AKAMATSU S,KAMACHI M,et al.Coding facial expressions with Gabor wavelets[C]//Proceedings of the 3rd IEEE International Conference on Automatic Face and Gesture Recognition.Washington D.C.,USA:IEEE Press,1998:200-205. [24] LI Shan,DENG Weihong,DU Junping.Reliable crowdsourcing and deep locality-preserving learning for expression recognition in the wild[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:2584-2593. [25] LUCEY P,COHN J F,KANADE T,et al.The extended Cohn-Kanade dataset(CK+):a complete dataset for action unit and emotion-specified expression[C]//Proceedings of Computer Vision and Pattern Recognition Workshops.Washington D.C.,USA:IEEE Press,2010:94-101. [26] MOLLAHOSSEINI A,CHAN D,MAHOOR M H.Going deeper in facial expression recognition using deep neural networks[C]//Proceedings of 2016 IEEE Winter Conference on Applications of Computer Vision.Washington D.C.,USA:IEEE Press,2016:1-10. |