[1] SU Heng,ZHOU Jie,ZHANG Zhihao.Survey of super-resolution image reconstruction methods[J].Acta Automatica Sinica,2013,39(8):1202-1213.(in Chinese) 苏衡,周杰,张志浩.超分辨率图像重建方法综述[J].自动化学报,2013,39(8):1202-1213. [2] CHEN Feng.Super resolution digital image feature extraction and reconstruction methods[J].Science Technology and Engineering,2017,17(11):255-259.(in Chinese) 陈烽.超分辨率数字图像特征提取及重构方法研究[J].科学技术与工程,2017,17(11):255-259. [3] WEI Deyun.Image super-resolution reconstruction using the high-order derivative interpolation associated with fractional filter functions[J].IET Signal Processing,2016,10(9):1052-1061. [4] PAPYAN V,ELAD M.Multi-scale patch-based image restoration[J].IEEE Transactions on Image Processing,2016,25(1):249-261. [5] KIM K I,KWON Y.Single-image super-resolution using sparse regression and natural image prior[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(6):1127-1133. [6] DING Zongyuan,WANG Hongyuan.Person re-identification based on iterative projection vectors learning[J].Computer Engineering and Design,2018,39(4):1120-1124.(in Chinese) 丁宗元,王洪元.基于迭代投影向量学习的行人重识别[J].计算机工程与设计,2018,39(4):1120-1124. [7] GAO Junbin,GUO Yi,YIN Ming.Restricted boltzmann machine approach to couple dictionary training for image super-resolution[C]//Proceedings of 2013 IEEE International Conference on Image Processing.Washington D.C.,USA:IEEE Press,2013:499-503. [8] TIMOFTE R,DE V,GOOL L V.Anchored neighborhood regression for fast example-based super-resolution[C]//Proceedings of 2013 IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2013:1-8. [9] KIM J,LEE J K,LEE K M.Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:1-9. [10] XIAO Jinsheng,LIU Enyu,ZHU Li,et al.Improved image super-resolution algorithm based on convolutional neural network[J].Acta Optica Sinica,2017,37(3):96-102.(in Chinese) 肖进胜,刘恩雨,朱力,等.改进的基于卷积神经网络的图像超分辨率算法[J].光学学报,2017,37(3):94-102. [11] DONG C,LOY C C,HE K M,et al.Image super-resolution using deep convolutional networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(2):295-307. [12] YOUM G Y,BAE S H,KIM M.Image super-resolution based on convolution neural networks using multi-channel input[C]//Proceedings of IEEE 12th Image,Video,and Multidimensional Signal Processing Workshop.Washington D.C.,USA:IEEE Press,2016:223-228. [13] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2019-07-11].https://arxiv.org/abs/1409.1556. [14] LIU Sanguo.Research on image sharpening[D].Qufu:Qufu Normal University,2011.(in Chinese) 刘三国.图像锐化的研究[D].曲阜:曲阜师范大学,2011. [15] YE Chuntao,WU Ting,ZHANG Wen,et al.Flexible sliding window algorithm and estimation of the computation[J].Computer Applications and Software,2008,25(11):42-43,82.(in Chinese)叶春涛,吴铤,张旻,等."灵活"的滑动窗口算法及其计算量的估计[J].计算机应用与软件,2008,25(11):42-43,82. [16] PASCANU R,MONTUFAR G,BENGIO Y.On the number of response regions of deep feed forward networks with piece-wise linear activations[EB/OL].[2019-07-11].https://arxiv.org/abs/1312.6098. [17] TIAN Juan,LI Yingxiang,LI Tongyan.Contrastive study of activation function in convolutional neural network[J].Computer Systems & Applications,2018,27(7):43-49.(in Chinese)田娟,李英祥,李彤岩.激活函数在卷积神经网络中的对比研究[J].计算机系统应用,2018,27(7):43-49. [18] SU Meihong,ZHANG Hai.Model selection and regularization approach based on the different loss functions[J].Basic Sciences Journal of Textile Universities,2014,27(4):463-469.(in Chinese)苏美红,张海.基于不同损失函数的模型选择和正则化学习方法[J].纺织高校基础科学学报,2014,27(4):463-469. [19] YANG Guanci,YANG Jing,LI Shaobo,et al.Modified CNN algorithm based on Dropout and ADAM optimizer[J].Journal of Huazhong University of Science and Technology(Nature Science Edition),2018,46(7):122-127.(in Chinese)杨观赐,杨静,李少波,等.基于Dropout与ADAM优化器的改进CNN算法[J].华中科技大学学报(自然科学版),2018,46(7):122-127. [20] SHEIKH H R,SABIR M F,BOVIK A C.A statistical evaluation of recent full reference image quality assessment algorithms[J].IEEE Transactions on Image Processing,2006,15(11):3440-3451. [21] ZHANG L,ZHANG L,MOU X Q,et al.A comprehensive evaluation of full reference image quality assessment algorithms[C]//Proceedings of the 19th IEEE International Conference on Image Processing.Washington D.C.,USA:IEEE Press,2012:1477-1480. [22] LIU Yuefeng,YANG Hanxi,CAI Shuang,et al.Single image super-resolution reconstruction method based on improved CNN[J].Journal of Computer Applications,2018,39(5):1440-1447.(in Chinese)刘月峰,杨涵晰,蔡爽,等.基于改进CNN的单幅图像超分辨率重建方法[J].计算机应用,2018,39(5):1440-1447. |