[1] BENOIT A, CALLET P L, CAMPISI P, et al.Quality assessment of stereoscopic images[J].EURASIP Journal on Image and Video Processing, 2008, 1:1-13. [2] ZHOU W J, YU L.Binocular responses for no-reference 3D image quality assessment[J].IEEE Transactions on Multimedia, 2016, 18(6):1077-1084. [3] YOU J Y, XING L Y, PERKIS A, et al.Perceptual quality assessment for stereoscopic images based on 2D Image quality metrics and disparity analysis[C]//Proceedings of the 5th International Workshop on Video Processing and Quality Metrics for Consumer Electronics.Arizona, USA:[s.n.], 2010:1-7. [4] 谭红宝.基于机器学习的无参考立体图像质量评价方法研究[D].无锡:江南大学, 2016. TAN H B.Research on non-reference stereo image quality evaluation method based on machine learning[D].Wuxi:Jiangnan University, 2016.(in Chinese) [5] LV Y Q, YU M, JIANG G Y, et al.No-reference stereoscopic image quality assessment using binocular self-similarity and deep neural network[J].Signal Processing:Image Communication, 2016, 47:346-357. [6] ZHANG W, QU C F, MA L, et al.Learning structure of stereoscopic image for no-reference quality assessment with convolutional neural network[J].Pattern Recognition, 2016, 59:176-187. [7] SHI Y Q, GUO W Z, NIU Y Z, et al.No-reference stereoscopic image quality assessment using a multitask CNN and registered distortion representation[J].Pattern Recognition, 2019, 100:1-12. [8] 朱玲莹, 桑庆兵, 顾婷婷.基于视差信息的无参考立体图像质量评价[J].计算机科学, 2020, 47(9):150-156. ZHUN L Y, SANG Q B, GU T T.No-reference stereo image quality assessment based on disparity information[J].Computer Science, 2020, 47(9):150-156.(in Chinese) [9] 马亚男, 李思原.基于视觉显著性的立体图像质量评价算法[J].工业控制计算机, 2018, 31(10):70-71. MA Y N, LI S Y.Stereoscopic image quality evaluation algorithm based on visual saliency[J].Industrial Control Computer, 2018, 31(10):70-71.(in Chinese) [10] 曹春红, 孙榕, 钟琴.基于图像显著性识别的自动抠图系统[J].计算机工程, 2019, 45(9):248-252. CAO C H, SUN R, ZHONG Q.Automatic matting system based on image saliency recognition[J].Computer Engineering, 2019, 45(9):248-252.(in Chinese) [11] 周洋, 何永健, 唐向宏, 等.融合双目多维感知特征的立体视频显著性检测[J].中国图象图形学报, 2017, 22(3):305-314. ZHOU Y, HE Y J, TANG X H, et al.Stereoscopic video saliency detection combining binocular multi-dimensional perception features[J].Journal of Image and Graphics, 2017, 22(3):305-314.(in Chinese) [12] ZHANG L, GU Z Y, Li H Y.SDSP:a novel saliency detection method by combining simple priors[C]//Proceedings of IEEE International Conference on Image Processing.Washington D.C., USA:IEEE Press, 2014:171-175. [13] DIDYK P, RITSCHEL T, EISEMANN E, et al.A perceptual model for disparity[J].ACM Transactions on Graphics, 2011, 30(4):1-10. [14] WANG J, DA SILVA M P, LE C P, et al.Computational model of stereoscopic 3D visual saliency[J].IEEE Transactions on Image Processing, 2013, 22(6):2151-2165. [15] ZHANG H X, CAO X.A way of image fusion based on wavelet transform[C]//Proceedings of the 9th International Conference on Mobile Ad-hoc and Sensor Networks.Washington D.C., USA:IEEE Press, 2014:498-501. [16] RUDERMAN D L.The statistics of natural images[J].Network:Computation in Neural Systems, 1994, 5(4):517-548. [17] MITTAL A, MOORTHY A K, BOVIK A C.No-reference image quality assessment in the spatial domain[J].IEEE Transactions on Image Processing Society, 2012, 21(12):4695-4708. [18] MOORTHY A K, SU C C, MITTAL A, et al.Subjective evaluation of stereoscopic image quality[J].Signal Processing:Image Communication, 2013, 28(8):870-883. [19] CHEN M J, CORMACK L K, BOVIK A C.No-reference quality assessment of natural stereopairs[J].IEEE Transactions on Image Processing, 2013, 22(9):3379-3391. [20] SHAO F, LIN W S, GU S B, et al.Perceptual full-reference quality assessment of stereoscopic images by considering binocular visual characteristics[J].IEEE Transactions on Image Processing, 2013, 22(5):1940-1953. [21] LI S M, HAN X, ZUBAIR M, et al.Stereo image quality assessment based on sparse binocular fusion convolution neural network[C]//Proceedings of IEEE Conference on Visual Communications and Image Processing.Washington D.C., USA:IEEE Press, 2020:1-4. [22] WANG J H, REHMAN A, ZENG K, et al.Quality prediction of asymmetrically distorted stereoscopic 3D images[J].IEEE Transactions on Image Processing, 2015, 24(11):3400-3414. [23] CHEN M J, SU C C, KWON D K, et al.Full-reference quality assessment of stereopairs accounting for rivalry[J].Signal Processing:Image Communication, 2013, 28(9):1143-1155. [24] SHAO F, LI K, LIN W S, et al.Full-reference quality assessment of stereoscopic images by learning binocular receptive field properties[J].IEEE Transactions on Image Processing, 2015, 24(10):2971-2983. [25] SAMEEULLA K M, CHANNAPPAYYA S S.Sparsity based stereoscopic image quality assessment[C]//Proceedings of the 50th Asilomar Conference on Signals, Systems and Computers.Washington D.C., USA:IEEE Press, 2017:1858-1862. [26] SAMEEULLA K M, APPINA B, CHANNAPPAYYA S S.Full-reference stereo image quality assessment using natural stereo scene statistics[J].IEEE Signal Processing Letters, 2015, 22(11):1985-1989. [27] SAAD M A, BOVIK A, CHARRIER C.Blind image quality assessment:a natural scene statistics approach in the DCT domain[J].IEEE Transactions on Image Processing, 2012, 21(8):3339-3352. [28] SHAO F, LI K, LIN W S, et al.Learning blind quality evaluator for stereoscopic images using joint sparse representation[J].IEEE Transactions on Multimedia, 2016, 18(10):2104-2114. [29] JIANG Q P, SHAO F, LIN W S, et al.Learning a referenceless stereopair quality engine with deep nonnegativity constrained sparse autoencoder[J].Pattern Recognition, 2018, 76:242-255. [30] NIU Y Z, HUANG D, SHI Y Q, et al.Siamese-network-based learning to rank for no-reference 2D and 3D image quality assessment[J].IEEE Access, 2019, 7:101583-101595. |